使用持续学习改进多模态大型语言模型

本文研究了在大规模语言模型中集成视觉信息所导致的自然语言理解和生成能力的下降问题,尤其是在多模态大语言模型(MLLM)中。通过将LLaVA MLLM视为一个持续学习问题,文章评估了五种持续学习方法,旨在减轻模型在处理新视觉语言任务时的语言能力遗忘。研究结果表明,所提的方法能够显著降低语言性能退化,同时保持高水平的多模态准确性,最佳方法的语言性能损失最多减少15%。此外,本文还展示了在一系列视觉-语言任务上持续学习的鲁棒性,有效地保持了语言技能并获取了新的多模态能力。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

1 LLAVA MLLM

视觉编码器

  • LLaVA使用预训练的视觉编码器(如ViT-L/14)来处理输入图像。该编码器在训练过程中保持冻结状态,以确保模型的稳定性并防止在初始训练任务中的过拟合。

· 语言模型(LLM)

  • LLaVA集成了多种规模的语言模型,包括不同参数数量的Pythia模型和其他先进的模型。这些模型经过特别的指令调优,以适应多模态任务的需求。

· 对齐网络

  • 对齐网络的作用是将视觉编码器生成的嵌入与语言模型的文本标记嵌入进行对接。这个网络通过将视觉信息投射到文本表示空间来实现多模态的集成,增强模型对视觉和语言数据的理解能力。

· 训练过程

  • LLaVA的训练遵循特定的协议,以确保视觉和语言信息的有效整合。在这一过程中,重点关注如何通过优化策略来减少语言遗忘现象,同时保持多模态任务的性能。

· 语言遗忘的挑战

  • LLaVA模型在集成视觉信息后,往往会遭遇语言理解和生成能力的显著下降,这种现象被称为“语言遗忘”。因此,开发出有效的方法来减轻这种遗忘对模型性能的影响是LLaVA的一个重要目标。

2 结语

LoRA(低秩适配)

  • LoRA是一种在保持原始语言模型权重不变的情况下,通过学习低秩更新来适应新任务的方法。这种方式能够在多模态模型中引入新知识,同时减轻语言遗忘的现象。

· 软目标

  • 软目标技术通过对训练标签进行平滑处理,降低目标分布的偏差,以减轻模型在新任务训练中的性能下降。这种方法使得模型在学习新任务时能更好地保留之前任务的知识,从而有效减少语言遗忘。

· 重演(经验重演)

  • 重演方法涉及在学习新任务时,将之前任务的数据混合使用,以保持对先前知识的记忆。这种方法通常会存储一小部分来自旧任务的样本,与新任务数据一起训练,从而有效防止遗忘。

· mSGM(改进的平滑生成模型)

  • mSGM结合了软目标和其他技术,通过优化模型的训练过程,减轻语言遗忘。该方法采用了调整后的软目标策略,旨在在新任务的学习过程中保留已有的语言能力。

· 经验回放(Rehearsal)

  • 经验回放是指在训练过程中使用少量先前任务的样本,以确保模型在学习新任务时不会遗忘之前的知识。这种策略强调了通过重复训练旧任务样本来增强模型的记忆能力。

· 适应性更新

  • 该方法动态调整模型参数更新的策略,以便在引入新任务时更有效地保留旧任务的知识。这种适应性方法能够在多模态学习环境中灵活应对知识的迁移。

3 结语

本文探讨了如何通过持续学习技术减轻多模态大语言模型(MLLM)在集成视觉信息后自然语言能力的遗忘现象,提出了一种方法能够在保持多模态准确性的同时显著降低语言性能的退化。

论文题目: Improving Multimodal Large Language Models Using Continual Learning

论文链接: https://arxiv.org/abs/2410.19925

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值