随着人工智能技术的飞速发展,大语言模型在各个领域展现出强大的潜力,特别是在医学领域的应用更是引起了广泛关注。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
在上期学术分享直播中,中国科学院计算技术研究所学生齐鑫域分享了医学大语言模型的研究现状,共同探讨医学大语言模型的专业知识,展现其如何加速AI与医疗的深度融合,促使医疗诊断更加精准。
🔷 医学大语言模型概述
1、 定义与背景
大语言模型是一类旨在理解和生成人类语言的人工智能模型,其规模庞大,通常包含数百亿个参数。这类模型不仅能处理文本总结、翻译、情感分析等任务,在医疗领域也展现出巨大的应用潜力。
医学大语言模型则是针对医学领域定制的语言模型,旨在通过深度学习和大规模医疗数据训练,提高医疗信息处理、疾病诊断、治疗方案建议等任务的效率和准确性。
2、技术原理
医学大语言模型的技术原理主要基于统计语言模型、神经网络语言模型以及基于Transformer的大语言模型。
统计语言模型依赖于统计分布和频率来预测单词,而神经网络语言模型则引入神经网络结构来捕捉词与词之间的复杂关系。
基于Transformer的模型则通过自注意力机制,允许模型包含更多的参数和数据,进一步提升模型的性能。
🔷构建MedLLM的方法
1、数据支 持
构建MedLLM需要庞大的医学文本库作为训练数据,这些数据包括电子健康记录、临床笔记、DNA序列、医学文献等。
重要的数据资源如PubMed和PubMed Central提供了生物医学领域的文献检索服务,而MIMIC-III、MedMCQA、PubMedQA等数据集则进一步丰富了医学LLM的训练资源。
2、构建方法
构建MedLLM主要有三种方法:
·从头开始进行预训练: 在庞大的医学文本库上训练模型,使其吸收和学习丰富的医学知识。
·从现有的通用LLM中进行微调: 选择已有的通用LLM作为基础,通过微调使其适应特定的医疗任务。这种方法可以节省时间和成本,并且能够利用通用LLM已有的强大能力。
·通过提示将普通LLM与医学领域对齐: 利用提示(prompt)技术,高效地将通用LLM对齐至医学领域,无需重新训练模型参数。
🔷面临的挑战
尽管医学大语言模型展现出了巨大的潜力,但其发展仍面临诸多挑战:
·幻觉现象: 模型生成的输出中可能包含不准确或非事实性的信息,这可能导致误诊和不当治疗。
通过训练时校正、生成时校正以及检索增强校正等方法,可以在一定程度上减轻这一问题。
·缺乏评估基准和指标: 当前的评估基准往往无法全面评估医学LLM的整体能力。制定特定LLM基准,如TruthfulQA和HaluEval,为医学LLM评估体系提供了重要参考。
·医学领域数据限制: 当前医学领域的数据集相对较小,无法全面覆盖医学知识。
加强数据共享与合规性,以及采用无监督与半监督学习方法,可以有效缓解这一问题。
·隐私安全和伦理问题: 训练数据可能泄露个人隐私,且模型在医学和伦理问题上可能产生不同观点。加强数据源头治理,增加安全训练模块,并通过指令微调、人类反馈强化学习等方法提升模型与人类价值观的对齐能力。
🔷典型医疗模型介绍
1、Medical Graph RAG
Medical Graph RAG是一种基于图的检索增强生成(RAG)框架,专为医疗领域设计。
该模型通过构建医学图谱并结合RAG技术,增强了LLM在医疗问答中的准确性和可靠性。
其创新点在于将图数据和RAG相结合,创建三层图结构,实现了基于证据的医学知识生成。
2、Med-PaLM 2
Med-PaLM 2是首个超过美国医师执照考试样例问题“合格”分数的医学LLM。
该模型在PaLM 2的基础上,通过一系列医学领域微调和提示策略,得分达到了86.5%,达到了“专家水平”。
其采用的方法包括少样本提示、集成优化(ER)方法、思维链技术等,显著提升了模型在医学问答任务中的性能。
3、AMIE
AMIE是一个基于LLM的临床诊断对话系统,专为优化医患沟通和辅助诊断设计。
该系统通过模拟对话环境训练、在线推理等步骤,实现了对临床病史的收集和诊断建议的生成。
其创新点在于模拟对话环境训练和自我博弈机制,提高了模型在处理复杂对话场景中的能力。
🔷未来发展
·引入新的评测基准: 新基准应从权威医学资料中获取信息、适应不断变化的医学知识、具有清晰传达不确定性的能力,还应评估公平性、伦理和公正性等关键因素。
·医学代理: 基于LLM的代理通过类似人类的行为,在解决复杂任务方面取得了重大进展。
医疗领域涉及众多角色和决策过程,利用LLM模拟角色,创建协作式医疗代理。
·跨学科合作: 医学界主要采用了科技公司提供的LLM,但未对其数据训练、伦理协议或隐私保护进行严格审查。
需要鼓励相关医务人员积极参与创建和部署医疗大模型,提供相关的训练数据,定义医学大模型的预期收获,在现实世界中进行测试等工作。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓