DeepSeek大模型微调,家教式全流程实战指南!

第一步 Python环境准备

peft transformers datasets torch accelerate bitsandbytes

具体请见文件 requirements.txt 上方下载↑↑↑

第二步 构造数据集

本文数据使用.jsonl文件。数据为拟造,仅供试验

1.每一行数据为一个json对象,包含一个问题和一个答案

2.初学者请注意数据的内容并没有格式要求,只要在后续步骤中能够处理成训练数据即可

第三步,数据处理

1.加载数据集

2.编写数据格式化逻辑

下图的逻辑是将问题部分作为输入,答案部分作为标签。分词时,句子超过最大长度限制时就截断,不足最大长度时填充至最大长度,保持所有句子相同长度则可以Batch化处理:

下图是将问题和答案整体作为输入,自身作为标签:

3.分词

句子需要变成一个个基本单位或者叫做词,即token。分词的核心是在该模型对应的词表中找到每个词的编号,也就是它们的表示。

创建分词器(加载时使用的参数和下文加载模型一样),以及利用上面编写的格式化函数来格式化数据:

第四步,模型加载和量化

加载模型的方式:

1.指定模型名称和缓存位置,如果缓存位置没有模型则从HuggingFace上下载后放到缓存位置,不指定缓存位置则使用默认位置(用户目录下的.cache/huggingface)

2.直接给定一个模型的目录。这种情况一般用在使用自己训练的模型时。见后文加载微调后的模型并使用

第五步,配置LoRA

LoRA帮助我们只训练部分参数。

第六步,配置训练参数

比如学习率、batch_size、lr等等,这些是AI领域最常见的术语。其中图中的output_dir用于存放训练过程中输出的数据,如checkpoint。

第七步,初始化训练器

传入要训练的LoRA模型、训练参数、训练集、验证集、分词器等

第八步,训练及保存

训练:

保存分为两步:

1.保存LoRA模型

2.利用保存的LoRA模型和DeepSeek基础模型合并成完整模型,并保存

那么,如何系统的去学习大模型LLM?

作为一名深耕行业的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值