在生成式AI浪潮席卷各行业的当下,众多企业都在思索一个问题:大模型究竟能为企业经营带来哪些实质性价值?AI产品经理正处于这场产业升级的“核心枢纽”——不仅要懂模型、懂业务,还要有能力凭借一张“看得懂、讲得通、可落地”的架构图,将技术蓝图转化为企业经营的实际解决方案。
不少AI产品经理在面对大模型时,容易陷入“空谈能力,不谈落地”或“只看应用,不懂底层”的误区。如何让一张产品架构图既展现AI能力的全貌,又紧密贴合企业经营的真实场景?本文将围绕这一问题,从AI能力体系、企业职能渗透、核心场景构建,再到关键产品决策,一步步带你拆解一张“真正可用于企业落地”的大模型产品架构图,助力你构建既有逻辑支撑又具落地能力的AI产品设计思维。无论你是AI产品领域的新手,还是深耕行业多年的专家,这篇文章都能为你提供一套系统清晰、颇具借鉴意义的方法论。
一、为什么要画这张产品架构图?明确目标,是产品经理的第一步
画图不是为了“好看”,而是为了解决问题:
- 企业管理者看图要能快速理解大模型的“价值落点”;
- 技术研发看图要知道关键能力在哪、如何衔接;
- 业务部门看图要清楚自己能用哪些 AI 功能、怎么用;
- 产品团队看图要用它作为路线图、评审标准和迭代依据。
简而言之,这张图产品架构图就是连接大模型能力与企业实际经营之间的桥梁,是推动 AI 项目落地的“总蓝图”。
二、绘图前的准备:不是“想画什么画什么”,而是“系统规划、按图建构”
在真正落笔之前,AI 产品经理要完成三件事:
1. 梳理企业业务职能
首先,你要搞清楚企业都有哪些关键职能线,常见的包括:
- 营销/客服
- OA(办公自动化)
- 财务管理
- 人力资源
- 研发设计
- 供应链与运营
每一条职能线背后都有大量可被大模型赋能的场景,要结合实际业务运作流程进行梳理,而不是照搬行业模板。
2. 归纳“共性场景”
虽然职能各不相同,但很多 AI 赋能的场景是共通的,比如:
- 协同办公(信息流转、自动审批、会议纪要)
- 内容生成(文案、方案、总结、PPT)
- 数据分析(预测、报表、监控)
- 知识管理(文档查询、内部搜索、智能问答)
这类“横向场景”正是打通不同部门之间 AI 应用的连接点。
3. 明确大模型的底层能力
不是所有“智能”都是“大模型”驱动的,作为AI产品经理,你要分得清楚:
- 哪些场景是靠语言生成(NLG)来实现的?
- 哪些依赖知识检索与图谱?
- 哪些涉及多轮推理、复杂判断?
- 哪些是需要与其他系统集成、自动执行任务?
底层能力定清楚,才能设计好上层结构。
三、架构图的整体结构:三层五维、纵横清晰
我们最终的架构图建议分为 三大层级,从上到下分别是:
- 职能渗透层:展示大模型如何深入企业六大职能
- 场景聚合层:聚焦 AI 应用的通用高频场景
- 能力支撑层:展示大模型的底层核心能力
整体结构如下:
四、职能渗透层:让 AI 真正落到业务单元中
这一层是业务视角最关心的,也是产品经理最容易犯错的地方。不是简单写“AI+财务”,而是要列清楚每条线有哪些具体功能,AI 能解决哪些痛点。
职能部门 | 可赋能的典型应用(AI 功能点) | 成熟度 |
---|---|---|
营销/客服 | 话术生成、广告文案生成、客服机器人、客户情绪识别、舆情监测 | ★★★★☆ |
OA系统 | 自动会议纪要、流程审批建议、日报生成、政策解读、日程管理 | ★★★★☆ |
财务 | 报表自动生成、费用分类与核查、税务知识问答、发票审核、预算预测 | ★★★☆☆ |
HR | 简历筛选、入职问答、员工画像、培训内容生成、绩效建议、离职风险预警 | ★★★★☆ |
研发 | 代码生成与补全、需求文档转代码、自动化测试脚本生成、产品文档自动编写 | ★★★★★ |
供应链与运营 | 采购预测、库存调度建议、物流监控、异常预警、合规检查、智能报表 | ★★★☆☆ |
建议使用图标+进度条或星级表示成熟度,也可标注“试点中 / 已落地 / 待规划”。
五、场景聚合层:打通跨职能的高频应用场景
我们把所有业务中的“共性场景”归纳为四大类,方便统一设计和复用:
1. 协同办公场景
AI 能在工作流中提供即时支持,比如:
- 智能会议纪要(自动总结发言要点)
- 工作日报周报生成(根据系统数据自动撰写)
- 审批建议推荐(根据历史案例自动判断合理性)
2. 内容生成场景
内容爆炸时代,AI 是最强“文案助手”:
- 商务邮件、广告文案自动撰写
- 内部报告、培训材料生成
- 技术文档、产品说明书自动提取生成
3. 数据分析场景
结合 BI 与 NLP,AI 可支持更自然的数据交互:
- “用自然语言提问”获取图表和趋势分析
- 财务分析、销售预测、客户行为建模
- 异常数据预警
4. 知识管理场景
通过企业知识库 + 向量数据库,打造“企业的ChatGPT”:
- 搜索公司政策、流程、产品规范
- 新员工提问机器人
- 法务或财税智能问答助手
这些场景可用“横向泳道图”串联多个职能,体现“一个能力,赋能多部门”。
六、能力支撑层:四大底座决定你能做多深、跑多快
最底层是 AI 产品经理必须与技术深度协作的一层,也是大模型真正的“动力来源”:
能力模块 | 核心作用与示例 | 技术代表或工具 |
---|---|---|
语言理解与生成 | 问答、写作、润色、总结、改写 | GPT、Claude、Gemini |
知识图谱与检索 | 向量检索、知识库构建、内部文档问答 | Faiss、Milvus、LangChain |
推理与决策 | 多轮推理、流程分支判断、数据驱动建议、复杂任务规划 | CoT、Function Calling |
多模态与自动化 | OCR识别、语音转写、任务执行、RPA接口集成 | UiPath、OpenAI Functions |
每一个能力模块下,建议列出典型接口 + 是否已集成 / 计划集成,方便技术同事对接。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!