一、大模型简介与核心原理
大语言模型(Large Language Model, LLM)是人工智能领域的核心技术,基于Transformer架构,通过海量数据预训练和微调,实现对自然语言的深度理解与生成能力。其核心原理包含以下关键要素:
- 预训练与微调:模型先在通用语料库(如网页、书籍、代码)上通过自监督学习捕捉语言规律,再通过特定任务数据(如问答、对话)进行微调,适配具体场景。
- 注意力机制:Transformer的自注意力机制(Self-Attention)允许模型并行处理序列数据,解决了传统RNN的长距离依赖问题,显著提升训练效率。
- 参数规模:模型参数量从十亿级(如LLaMA-7B)到万亿级(如GPT-4),参数量的增长显著提升了模型的跨任务处理能力和推理精度。
二、主流大模型清单
当前大模型可分为闭源与开源两类,各具特色:
闭源模型:
- GPT-4(OpenAI):支持多模态输入,推理能力卓越,广泛应用于复杂问答和代码生成。
- Claude-3(Anthropic):上下文窗口扩展至1M token,专注于减少幻觉并增强无害性。
- 日日新SenseNova(商汤科技):超千亿参数的多模态模型,支持中英文及文本、图像、视频处理,开源生态强大。
开源模型:
-
LLaMA系列(Meta):参数7B-70B,性能媲美GPT-3.5,成为开源社区基础模型首选。
-
ChatGLM-6B(清华):中英双语支持,量化后可在消费级显卡部署。
-
deepseek:性能高效,成本更低效果更好。
三、大模型技术生态分层解析
1. 基础模型层:
基础模型层是生态的底层支撑,分为闭源、开源与垂直领域模型:
- 闭源模型:以GPT-4、Claude-3为代表,通过API提供商业化服务,支持插件扩展(如ChatGPT插件生态),适用于高可靠性场景。
- 开源模型:如LLaMA、Mistral-7B,允许开发者自由微调和优化,推动社区创新。例如,阶跃星辰开源的Step-Video-T2V支持生成540P视频,参数达300亿。
- 垂直模型:医疗领域的Med-PaLM、金融领域的BloombergGPT,通过领域数据微调提升专业性。
2. 模型运行层:高效推理的引擎
运行层解决模型部署的效率与资源问题,工具选型需根据场景需求:
高性能推理框架:
- vLLM:采用PagedAttention技术,A100 GPU上吞吐量达2450 tokens/s,显存占用降低40%,适合高并发API服务。
- LMDeploy:通过Turbomind引擎实现50ms级延迟,支持W4A16量化,模型体积压缩4倍,适用于实时风控系统。
- TGI(Text Generation Inference):支持多GPU扩展与自动故障转移,符合GDPR标准,被AWS SageMaker采用。
轻量化框架:
- Ollama:一键本地部署,集成Web界面,6GB显存即可运行7B模型,适合个人快速验证。
- Llama.cpp:纯CPU推理,树莓派4B即可运行,适用于边缘设备隐私计算。
3. 模型优化层:性能提升的关键
优化层通过技术创新提升模型效率与适配性:
微调技术:
-
LLaMA-Factory:支持参数高效微调(PEFT),仅调整0.1%参数即可适配垂直场景。
-
Unsloth:优化LoRA微调流程,训练速度提升30%,显存消耗减少50%。
-
量化压缩:ChatGLM-6B通过INT4量化将显存需求降至6GB,实现低门槛部署。
-
框架优化:Hugging Face Transformers库支持动态批处理与混合精度训练,提升训练效率3倍。
4. 开发框架层:应用构建的脚手架
开发框架降低技术门槛,加速应用落地:
- LangChain:支持多模型编排与外部工具集成,可构建RAG增强的问答系统,提升知识库准确性。
- LlamaIndex:优化检索增强生成(RAG),支持多源数据索引,适用于企业级知识管理。
- Spring AI:提供标准化API接口,集成企业级安全与监控,简化金融、医疗行业应用开发。
5. 中间件层:功能增强的粘合剂
中间件连接模型与应用,实现复杂功能组合:
AI Agent技术:
- AutoGen:支持多智能体协作,可自动分解任务并调用工具(如代码解释器),适合自动化工作流。
- CrewAI:任务编排框架,支持动态资源分配,被用于智能制造中的质检流程优化。
向量数据库:
- Chroma:轻量级开源方案,支持实时语义搜索,延迟低于10ms。
- Pinecone:企业级服务,提供混合检索(关键词+向量),适用于电商推荐系统。
6. 应用层:智能落地的终端
应用层直接面向用户,覆盖通用与垂直场景:
通用工具:
- 智能客服:基于GPT-4的对话系统,处理准确率达95%,减少人工干预。
- 内容创作:如DALL·E 3图像生成、阶跃星辰的Step-Video视频生成,提升创意效率。
垂直解决方案:
- 医疗:Med-PaLM 2实现病历自动分析,诊断建议通过率超90%。
- 金融:财跃星辰的“AI小财神”提供投资策略分析,支持多源数据推理路径可视化。
- 工业:Llama.cpp + KTransformers部署边缘质检终端,实时识别产品缺陷。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!