典籍知识问答模块AI问答功能前端实现三——对话删除及消息删除(暂未涉及前端界面设计)

一、对话删除

1. 功能入口
  • ​删除按钮位置​​:每个会话项右侧的"×"按钮
  • ​模板代码​​:
  • <button class="delete-session" @click.stop="deleteSession(session.id)">×</button>
2. 核心实现逻辑

const deleteSession = async (sessionId) => {
  if (confirm('确定删除该会话及其所有消息吗?')) {
    try {
      // 1. 调用后端API删除会话
      await axios.delete(`/api/qa/sessions/${sessionId}`)
      
      // 2. 更新前端会话列表
      sessions.value = sessions.value.filter(s => s.id !== sessionId)
      
      // 3. 处理当前会话状态
      if (currentSessionId.value === sessionId) {
        currentSessionId.value = null
        currentMessages.value = []
      }
    } catch (error) {
      console.error('删除会话失败:', error)
    }
  }
}

3. 实现特点
  • ​二次确认机制​​:通过浏览器原生confirm弹窗确认操作
  • ​状态同步​​:
    • 从会话列表中过滤已删除项(sessions.value.filter
    • 如果删除的是当前会话,清空消息列表并重置当前会话ID
  • ​事件修饰符​​:使用@click.stop阻止点击事件冒泡
4. 接口规范
  • ​请求方式​​:DELETE
  • ​接口地址​​:/api/qa/sessions/{sessionId}

二、消息删除

1. 功能入口
  • ​删除按钮位置​​:用户消息操作栏中的"×"按钮
  • ​模板代码​​:
  • <button class="delete-btn" @click="deleteMessage(message.id)">×</button>

2. 核心实现逻辑

const deleteMessage = async (messageId) => {
  if (confirm('确定删除该消息及其所有后续对话吗?')) {
    try {
      // 1. 调用后端API删除消息
      await axios.delete(`/api/qa/messages/${messageId}`)
      
      // 2. 更新前端消息列表
      currentMessages.value = currentMessages.value.filter(m => m.id !== messageId)
    } catch (error) {
      console.error('删除消息失败:', error)
    }
  }
}

3. 实现特点
  • ​级联删除​​:提示说明会删除"该消息及其所有后续对话",实际依赖后端实现级联删除逻辑
  • ​精准过滤​​:使用filter方法从消息列表中移除被删除项
  • ​用户限制​​:仅对用户消息(role === 'user')显示删除按钮
4. 接口规范
  • ​请求方式​​:DELETE
  • ​接口地址​​:/api/qa/messages/{messageId}

### 基于知识图谱的中药问答系统实现方案 #### 1. 系统架构概述 构建基于知识图谱的中药问答系统旨在利用先进的自然语言处理技术和知识图谱来提供智能化的回答服务。此类系统通常由以下几个模块组成: - **数据采集层**:负责收集来自不同源的数据,如中医药典籍、学术文献以及临床案例等。 - **预处理与清洗层**:对原始数据进行清理和标准化处理,去除噪声并统一格式。 - **知识抽取层**:运用命名实体识别(NER)、关系提取(RE)等技术从文本中抽取出有价值的结构化信息,并将其转化为元组形式存储至知识库中。 - **知识融合层**:解决多源异构数据间存在的冲突问题,确保知识的一致性和准确性。 - **推理引擎**:支持基于规则或逻辑编程的语言来进行复杂查询解答;也可以集成机器学习算法提高预测精度。 - **用户接口层**:为用户提供友好的交互界面,接收输入请求并将结果呈现出来。 #### 2. 关键技术要点 ##### 2.1 数据获取与整理 为了建立高质量的知识图谱,需要广泛搜集各类关于中药材的信息资源。这不仅限于传统医药书籍,还包括现代研究成果及实际应用场景下的反馈意见。对于特定药材的具体加工方法等问题,则可以通过爬虫程序自动抓取权威网站上的相关内容[^1]。 ##### 2.2 自然语言理解能力提升 针对用户的提问模式训练专门定制化的对话模型至关重要。借助BERT等预训练语言模型的强大表征力,再配合领域内特有的术语词典扩充其词汇量,从而更好地捕捉意图背后的深层含义。此外,还可以引入外部知识增强机制,即当遇到不熟悉的表达时主动检索关联资料辅助解析[^3]。 ##### 2.3 高效索引与快速响应 考虑到大规模知识图谱可能带来的性能瓶颈,在设计之初就应考虑采用分布式计算框架(如Apache Spark)加速离线任务执行效率的同时优化在线服务环节。比如预先计算好一些常用的路径模式存入缓存以便即时调用;或是利用图数据库特性加快邻居节点遍历速度等等。 ```python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("HerbRecommendation").getOrCreate() df = spark.read.json("/path/to/herbal_data") ``` #### 3. 应用实例展示 假设现在有一个名为“智医助”的虚拟助手应用程序,它能够帮助医生们更便捷地查阅有关各种草药的功效主治及其配伍禁忌等方面的专业资讯。下面给出一段模拟对话场景: > 用户:“请问黄芪适合治疗哪些病症?” > 智医助:“根据《神农本草经》描述,黄芪味甘性温,归脾肺二经,常被用来补气升阳、固表止汗、利水消肿。” 这里,“智医助”不仅仅给出了书面上的标准定义,还进一步解释了该药物的作用机理,使得回复更加贴近真实需求[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值