运维最新检索增强生成技术:开启知识获取的新纪元,2024年最新Linux运维开发零基础教学

最全的Linux教程,Linux从入门到精通

======================

  1. linux从入门到精通(第2版)

  2. Linux系统移植

  3. Linux驱动开发入门与实战

  4. LINUX 系统移植 第2版

  5. Linux开源网络全栈详解 从DPDK到OpenFlow

华为18级工程师呕心沥血撰写3000页Linux学习笔记教程

第一份《Linux从入门到精通》466页

====================

内容简介

====

本书是获得了很多读者好评的Linux经典畅销书**《Linux从入门到精通》的第2版**。本书第1版出版后曾经多次印刷,并被51CTO读书频道评为“最受读者喜爱的原创IT技术图书奖”。本书第﹖版以最新的Ubuntu 12.04为版本,循序渐进地向读者介绍了Linux 的基础应用、系统管理、网络应用、娱乐和办公、程序开发、服务器配置、系统安全等。本书附带1张光盘,内容为本书配套多媒体教学视频。另外,本书还为读者提供了大量的Linux学习资料和Ubuntu安装镜像文件,供读者免费下载。

华为18级工程师呕心沥血撰写3000页Linux学习笔记教程

本书适合广大Linux初中级用户、开源软件爱好者和大专院校的学生阅读,同时也非常适合准备从事Linux平台开发的各类人员。

需要《Linux入门到精通》、《linux系统移植》、《Linux驱动开发入门实战》、《Linux开源网络全栈》电子书籍及教程的工程师朋友们劳烦您转发+评论

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以点击这里获取!

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

检索增强生成(RAG)技术是由Facebook AI Research (FAIR)团队提出的。它首次在2020年的一篇论文中被详细介绍,论文标题为《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》。RAG结合了大规模预训练语言模型的生成能力和文档检索的能力,以改善对知识密集型自然语言处理(NLP)任务的处理效果,如问答、事实验证等。
检索增强生成技术结合了传统检索方法和现代生成模型的技术。它首先从一个大规模的文档数据库中检索出与给定查询最相关的信息,然后将这些信息作为生成模型的上下文输入,以此生成更加丰富、准确的文本。这种方法有效地扩展了生成模型的知识边界,使其能够利用数据库中的海量信息,产生更接近人类水平的输出。

工作原理

RAG技术的核心在于两个步骤:检索(Retrieval)和生成(Generation)。

  1. 检索阶段:在收到用户的查询后,系统首先利用检索算法在一个预先建立的大型文档数据库中查找最相关的文档或信息片段。这一过程通常需要高效的索引结构和算法,以确保能够快速准确地完成检索任务。
  2. 生成阶段:检索到的信息随后被送入一个预训练的生成模型,如GPT(Generative Pre-trained Transformer)或T5(Text-to-Text Transfer Transformer)。这些模型利用检索到的信息作为额外的上下文,生成与查询相关的回答或文本。

通过这两个阶段的协同工作,RAG技术能够产生既准确又信息丰富的文本输出,显著提升生成模型在多种应用场景中的表现。

应用场景

RAG技术的应用场景极其广泛,涵盖了从问答系统、内容推荐,到自然语言理解和生成等多个领域。

  • 问答系统:在问答系统中,RAG可以提供更加准确和详细的回答,特别是对于需要广泛背景知识支持的问题。
  • 内容创作:对于内容创作者而言,RAG技术可以帮助生成更加丰富和多样化的内容,从新闻文章到创意写作等。
  • 知识管理:企业和组织可以利用RAG技术高效地从大量文档中提取有价值的信息,支持决策制定和知识共享。

为了更深入理解检索增强生成(RAG)技术的实际应用,我们可以通过一个假想的例子,以Gemma模型为例来展示其工作原理。设想我们正在构建一个智能问答系统,目标是提供准确、信息丰富的回答。
假设用户向我们的系统提出了一个问题:“量子计算机是如何工作的?”为了回答这个问题,我们的系统将使用RAG技术,其中包含了Gemma模型作为生成模型的一部分。

RAG技术的应用步骤
  1. 检索阶段

    • 系统首先将问题“量子计算机是如何工作的?”作为查询输入,搜索预先建立的文档数据库。这个数据库包含了广泛的科学文献、教材、专家文章等。
    • 假设检索系统找到了几篇关于量子计算机原理、构造和应用的高相关性文档。
  2. 信息整合与处理

    • 系统将这些检索到的文档内容整合,提取出关键信息,如量子比特(qubits)、量子叠加、量子纠缠等概念,以及这些原理如何使量子计算机在处理某些计算任务时超越传统计算机。
  3. 生成阶段

    • 将整合好的信息输入到Gemma模型中。Gemma模型接收到这些详细的上下文信息后,开始生成回答,不仅涵盖了量子计算机的基本工作原理,还可能包括其在特定领域应用的例子,如药物发现、气候模拟等。
    • 生成的回答将是综合了检索到的信息,加上Gemma模型本身的知识库,形成一个既准确又深入的解释。

通过这个例子,我们可以了解RAG技术如何使问答系统的回答更加全面和准确。不仅仅是重复现有信息,而是通过理解和整合检索到的数据,加上强大的生成能力,提供深刻的见解和全面的回答。这种方法特别适用于需要广泛背景知识支持的复杂问题。

为了做好运维面试路上的助攻手,特整理了上百道 【运维技术栈面试题集锦】 ,让你面试不慌心不跳,高薪offer怀里抱!

这次整理的面试题,小到shell、MySQL,大到K8s等云原生技术栈,不仅适合运维新人入行面试需要,还适用于想提升进阶跳槽加薪的运维朋友。

本份面试集锦涵盖了

  • 174 道运维工程师面试题
  • 128道k8s面试题
  • 108道shell脚本面试题
  • 200道Linux面试题
  • 51道docker面试题
  • 35道Jenkis面试题
  • 78道MongoDB面试题
  • 17道ansible面试题
  • 60道dubbo面试题
  • 53道kafka面试
  • 18道mysql面试题
  • 40道nginx面试题
  • 77道redis面试题
  • 28道zookeeper

总计 1000+ 道面试题, 内容 又全含金量又高

  • 174道运维工程师面试题

1、什么是运维?

2、在工作中,运维人员经常需要跟运营人员打交道,请问运营人员是做什么工作的?

3、现在给你三百台服务器,你怎么对他们进行管理?

4、简述raid0 raid1raid5二种工作模式的工作原理及特点

5、LVS、Nginx、HAproxy有什么区别?工作中你怎么选择?

6、Squid、Varinsh和Nginx有什么区别,工作中你怎么选择?

7、Tomcat和Resin有什么区别,工作中你怎么选择?

8、什么是中间件?什么是jdk?

9、讲述一下Tomcat8005、8009、8080三个端口的含义?

10、什么叫CDN?

11、什么叫网站灰度发布?

12、简述DNS进行域名解析的过程?

13、RabbitMQ是什么东西?

14、讲一下Keepalived的工作原理?

15、讲述一下LVS三种模式的工作过程?

16、mysql的innodb如何定位锁问题,mysql如何减少主从复制延迟?

17、如何重置mysql root密码?

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以点击这里获取!

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

击这里获取!](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值