字节阿里打响价格战,200万tokens仅需1元_大模型简直卷疯了

国产大模型价格战白热化

近日,阿里云宣布其通义千问大模型大幅降价,引发了广泛关注。这次降价幅度惊人,Qwen-Long模型的API输入价格从原来的0.02元/千tokens降至0.0005元/千tokens,降幅达到97%。这意味着1块钱可以买200万tokens,相当于5本《新华字典》的文字量。该模型最高支持1千万tokens的长文本输入,降价后价格约为GPT-4的1/400,创下全球最低价。5月21日至6月21日,阿里大模型服务平台百炼新用户限时赠送3600万tokens(点击阅读原文注册领取)。

(通义千问大模型降价幅度)

这次降价背后的驱动力不仅仅是阿里云的竞争策略,也是整个国产大模型市场格局变化的一个缩影。此前,字节跳动旗下的豆包大模型也曾宣布价格下调至0.0008元/千tokens,比行业价格低99%。而周二早间,百度也宣布其文心大模型的两大主力模型全面免费。这一系列降价行动,显示出国产大模型从竞争算力和规模转向价格竞争的新趋势。

利好开发者,大模型应用即将爆发

阿里、百度等大模型巨头相继发布降价或免费的消息,大模型圈的价格战进入白热化阶段。对此,零一万物董事长兼CEO李开复表示:“这对整个行业来说是好消息。

李开复指出:“行业每年降低10倍推理成本是可以期待的,而且也是必然发生的。”他此前预测,大模型推理成本的下降将推动中国AI大模型进入落地为王的阶段,这对开发者来说是利好消息,今年将迎来“大模型应用爆发元年”。

自去年年初以来,OpenAI在不断迭代升级大模型的同时,已进行了4次降价。作为行业标杆,OpenAI的降价引发了整个行业的价格战。包括Google Gemini等竞争对手在内,纷纷降低使用者成本,以争夺市场份额。当一个行业进入全面降价阶段,往往意味着一场大规模的淘汰赛已经开始。

通义大模型降价释放技术红利

在国际权威评测平台chatbot Arena中,通义千问是唯一上榜的中国大模型,与GPT-4 Turbo、Gemini-1.5-Pro等国际顶级模型处于同一水平。此外,在OpenCompass权威基准测评中,通义千问2.5的得分与GPT-4 Turbo相当,而其视觉理解模型Qwen-VL-Max的得分也超越了其他知名模型如Gemini Ultra和GPT-4V,显示出其在多模态任务上的强大能力。

这一轮大幅降价的背后,反映了LLM(大型语言模型)性能增长的放缓,同时也体现出推理速度和推理成本的极致优化。阿里云凭借其公共云的技术红利和规模效应,构建了极致弹性的AI算力调度系统,大幅压缩了模型推理成本,并加快了模型推理速度。

此外,阿里云还宣布调整其大模型服务产品百炼和灵积上架的通义千问部分模型规格的计费模式,区分输入和输出分别计费,并于2024年5月21日生效。通义千问开源32b和110b将于2024年5月28日开始计费。新的计费模式和价格将为用户提供更大的灵活性和成本优势。

这一系列降价行动,将进一步推动国产大模型在国际市场上的竞争力,促进大模型技术的普及和应用。

在下一篇文章,我将演示如何利用阿里大模型服务平台和通义千问大模型建立自己的第一个AI应用

通义大模型价格全线最高直降97%,机会难得。

5月21日至6月21日新用户限时赠送3600万tokens点击阅读原文注册,领取阿里云开发者满减券礼包。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

AI时代的职场新潮流

听说AI要来抢工作了?别担心,新岗位可比旧岗位有趣多了!想象一下,你从搬砖工升级成了机器人操作员,从算盘小能手变成了大数据分析师,这不是美滋滋吗?所以,社会生产效率提升了,我们也能更轻松地工作。不过,想成为AI界的佼佼者?那就得赶紧学起来,不然就会被同行们甩得连AI的尾巴都摸不着了!

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值