【算法设计与分析】动态规划问题Python

例1:小明周末要参加学校组织的跳蚤市场活动,他准备了足球、旱冰鞋、随身听和单词书四件物品进行交易,要用他的书包把这些物品带到学校。各物品的重量w和价值v如下图所示,小明书包的最大承重量为9(忽略单位),请你帮助他找到最合理的搭配方案,使他能用书包带到学校的物品价值最大

1算法思路

这道题的算法思路是使用动态规划来解决。将问题分解为不同的子问题,并找到最优的子结构来得到最终的解。算法的步骤具体如下:

定义状态:令dp[i][j]表示前i件物品放入容量为j的书包中所能获得的最大价值。

初始化状态:将dp数组初始化为0,表示没有物品或容量为0时的价值为0。

状态转移方程:对于每个物品i和每个容量j,我们可以选择放入或不放入该物品。如果放入物品i,则dp[i][j] = dp[i-1][j-w[i]] + v[i];如果不放入物品i,则dp[i][j] = dp[i-1][j]。我们选择这两种情况中的最大值作为dp[i][j]的值。

边界条件:当i=0时,dp[0][j] = 0,表示没有物品时价值为0。

遍历物品和容量:使用双重循环遍历每个物品和每个容量,根据状态转移方程计算dp数组的值。

结果输出:最后,dp[n][W]中的值即为最大价值,其中n为物品的数量,W为书包的最大承重量。

2手算过程

通过以上算法,计算的过程如下:

1

2

3

4

5

6

7

8

9

足球w=2 v=5

0

足球5

足球5

足球5

足球5

足球5

足球5

足球5

足球5

旱冰鞋w=4 v=4

0

足球5

足球5

足球5

足球5

足球+旱冰鞋9

足球+旱冰鞋9

足球+旱冰鞋9

足球+旱冰鞋9

随身听w=5 v=6

0

足球5

足球5

足球5

随身听6

足球+旱冰鞋9

足球+随身听11

足球+随身听11

足球+随身听11

单词书w=3 v=2

0

足球5

足球5

足球5

足球+单词书7

足球+旱冰鞋9

足球+随身听11

足球+随身听11

足球+随身听11

3代码实现

该程序基于 Python3.11语言编写

"""背包问题"""

  def full_pack(max_weight, weights, values, n):

    dp = [[0 for i in range(max_weight + 1)] for j in range(n+1)]

    for i in range(1, n+1): #外循环:4个货物

       for j in range(1, max_weight+1): #内循环:1-9重量

          if weights[i-1] <= j: #如果可以装下当前货物

              #当前货物价值+前一行剩余容量可容纳的最大价值 和 正上方数据比较,取最大的

             dp[i][j] = max(values[i-1] + dp[i-1][j-weights[i-1]], dp[i-1][j])

          else: #如果装不下,复制表格正上方

             dp[i][j] = dp[i-1][j]

    # 输出选取方案

    selected_items = []

    j = max_weight

    for i in range(n, 0, -1):

       if dp[i][j] != dp[i-1][j]:

          selected_items.append(i-1)

          j -= weights[i-1]

  

    return dp[n][max_weight], selected_items

  

weights = [2, 4, 5, 3]

values = [5, 4, 6, 2]

items_name = ["足球", "旱冰鞋", "随身听", "单词书"]

  

max_weight = 9

  

  num_items = len(weights)

  

max_value = full_pack(max_weight, weights, values, num_items)

  

print("最大价值为:", max_value[0])

  

print("最佳的选取方案为:")

  for i in max_value[1]:

    print(items_name[i])
 

4代码解释

代码使用动态规划算法,目标是在给定一组物品的重量和价值的情况下,确定在不超过背包最大重量限制的情况下,能够获得的最大价值。

代码中的full_pack函数接受四个参数:max_weight表示背包的最大重量限制,weights表示每个物品的重量列表,values表示每个物品的价值列表,n表示物品的数量。

函数内部使用一个二维数组dp来存储子问题的解。dp[i][j]表示在前i个物品中选择一些物品放入容量为j的背包时能够获得的最大价值。

代码通过两层循环遍历所有可能的物品组合和背包容量。对于每个物品,如果其重量小于等于当前背包容量,则可以选择将其放入背包或不放入背包。根据动态规划的思想,我们比较将该物品放入背包后的总价值与不放入背包的总价值,取其中较大的值作为当前状态的最优解。

最后,函数返回dp[n][max_weight],即在所有物品中选择一些物品放入容量为max_weight的背包时能够获得的最大价值。

在代码的最后部分,定义物品的重量和价值列表,以及背包的最大重量限制。然后调用full_pack函数计算最大价值,并将结果打印输出。

我还编写了一段输出选取方案的代码,便于输出最佳的组合序列。首先,创建一个空列表selected_items用于存储选取的物品索引。然后,从最大重量max_weight开始遍历,通过比较动态规划表dp中当前物品和上一个物品在相同重量下的价值,判断是否选择了当前物品。如果选择了当前物品,则将其索引添加到selected_items列表中,并更新剩余重量j。最后,返回最大价值和选取的物品索引列表。

5结果验证

输出结果如图

最大价值为: 11

最佳的选取方案为:随身听+足球

与手算结果一致。

例2:某地有6座矿场,每座矿场的黄金储量和需要挖掘的工人数量如下所示。假设参与挖矿的工人总数是16人,且每座矿场要么全挖,要么不挖,不能派出一半人挖取一半金矿。要想得到尽可能多的黄金,应该选择挖取哪几座矿场呢?

1程序思路

这一题和题目二的思路是一样的,都是动态规划的背包问题。即在有限的工人数量下,如何选择矿场以获得最大的黄金产出。这是一个典型的背包问题,可以使用动态规划算法来解决。算法的步骤具体如下:

首先定义了一个名为full_pack的函数,该函数接收四个参数:max_weight(最大工人数量),weights(每个矿场所需的工人数量),values(每个矿场所需的黄金储量)和n(矿场数量)。函数的主要目的是计算在给定的最大重量限制下,如何选择矿场以获得最大的黄金产出。

在函数内部,首先创建了一个二维数组dp,用于存储子问题的解。然后使用两层循环遍历所有可能的货物组合和重量限制。对于每个货物,如果它可以被装入背包,那么就比较将其放入背包后的总价值与不放入背包的总价值,取其中较大的值作为当前状态的最优解。如果无法装入背包,则直接复制表格正上方的值。

接下来,输出选取方案。通过遍历dp数组的最后一行,找到最大价值所在的位置,然后根据这个位置回溯找到选择的矿场。最后将结果返回给调用者。

在主程序中,定义了两个列表:workers_in_need(每个矿场所需的工人数量)和gold_reserves(每个矿场所需的黄金储量)。然后调用full_pack函数,传入最大工人数量、工人需求列表、黄金储量列表和矿场数量,得到最大的黄金产出和选取方案。最后,打印出最大的黄金产出和最佳的选取方案。

2手算过程

根据算法的手算过程如下:

其中,表格第一列(1号6;500)意义:6代表需要6个工人,500表示黄金储量有500。

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1号6;500

0

0

0

1

500

1

500

1

500

1

500

1

500

1

500

1

500

1

500

1

500

1

500

1

500

2号5;300

0

0

2

300

1

500

1

500

1

500

1

500

1

500

1+2

800

1+2

800

1+2

800

1+2

800

1+2

800

1+2

800

3号6;150

0

0

2

300

1

500

1

500

1

500

1

500

1

500

1+2

800

1+2

800

1+2

800

1+2

800

1+2

800

1+2

800

4号4;300

0

4

300

4

300

1

500

1

500

1

500

2+4

600

1+4

800

1+4

800

1+4

800

1+4

800

1+4

800

1+2+4

1100

1+2+4

1100

5号3;350

5

350

5

350

5

350

1

500

1

500

1

500

1+5

850

1+5

850

1+5

850

2+4+5

950

1+4+5

1150

1+4+5

1150

1+4+5

1150

1+4+5

1150

6号3;350

5

350

5

350

5

350

1

500

1

500

1

500

1+5

850

1+5

850

1+5

850

1+5+6

1200

1+5+6

1200

1+5+6

1200

2+4+5+6

1200

1+4+5+6

1500

3代码实现

该程序基于 Python3.11语言编写

"""实验3:背包问题的应用——挖矿问题"""

  def full_pack(max_weight, weights, values, n):

  

    dp = [[0 for i in range(max_weight + 1)] for j in range(n+1)]

    for i in range(1, n+1): #外循环:4个货物

       for j in range(1, max_weight+1): #内循环:1-9重量

          if weights[i-1] <= j: #如果可以装下当前货物

              #当前货物价值+前一行剩余容量可容纳的最大价值 和 正上方数据比较,取最大的

             dp[i][j] = max(values[i-1] + dp[i-1][j-weights[i-1]], dp[i-1][j])

          else: #如果装不下,复制表格正上方

             dp[i][j] = dp[i-1][j]

    # 输出选取方案

    selected_items = []

    j = max_weight

    for i in range(n, 0, -1):

       if dp[i][j] != dp[i-1][j]:

          selected_items.append(i-1)

          j -= weights[i-1]

  

    return dp[n][max_weight], selected_items

  

workers_in_need = [6, 5, 6, 4, 3, 3] #每个矿场所需的工人

  gold_reserves = [500, 300, 150, 300, 350, 350] #每个矿场所需的黄金储量

  max_workers = 16

  num_mine = len(workers_in_need)

  

max_gold = full_pack(max_workers, workers_in_need, gold_reserves, num_mine)

  

print("最大的黄金产出为:", max_gold[0])

  

print("最佳的选取方案为:")

  for i in max_gold[1]:

    print(i+1)
 

4代码解释

函数full_pack(max_weight, weights, values, n)用于求解背包问题,其中max_weight表示背包的最大容量,weights表示每个物品的重量列表,values表示每个物品的价值列表,n表示物品的数量。

在函数内部,首先创建了一个二维数组dp,用于存储动态规划的状态。dp[i][j]表示在前i个物品中选择一些物品放入容量为j的背包中所能获得的最大价值。

使用两个嵌套的循环来填充dp数组。外层循环遍历所有物品,内层循环遍历从1到最大容量的所有可能的背包容量。

如果当前物品可以放入背包(即weights[i-1] <= j),则比较将该物品放入背包和不放入背包两种情况下的最大价值,取较大值作为dp[i][j]的值。

如果当前物品无法放入背包,则直接将上一行对应列的值复制给当前位置,即dp[i][j] = dp[i-1][j]。

最后,通过回溯dp数组,找到选取的物品方案。从最后一个物品开始,如果dp[i][j] != dp[i-1][j],则说明第i个物品被选中,将其添加到选取方案中,并更新背包容量j。

返回最大黄金产出和选取方案。

在主程序中,定义了每个矿场所需的工人数和黄金储量,以及最大工人数和矿场数量。

调用full_pack函数求解最大黄金产出和最佳选取方案。

5结果验证

输出结果如图

最大的黄金产出为: 1500

最佳的选取方案为:6、5、4、1号矿场

与手算结果一致。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值