第27篇:Q-learning的理论局限性:收敛性与最优性
1.背景介绍
1.1 强化学习概述
强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它关注智能体(Agent)如何通过与环境(Environment)的交互来学习并优化其行为策略,从而获得最大的累积奖励。与监督学习和无监督学习不同,强化学习没有提供明确的输入-输出样本对,而是通过试错和奖惩机制来学习。
1.2 Q-learning算法简介
Q-learning是强化学习中最著名和最成功的算法之一,它属于时序差分(Temporal Difference, TD)学习的一种,可以有效地解决马尔可夫决策过程(Markov Decision Process, MDP)问题。Q-learning算法的核心思想是,通过不断更新状态-动作值函数Q(s,a),来逼近最优的Q函数,从而获得最优策略π。
2.核心概念与联系
2.1 马尔可夫决策过程(MDP)
马尔可夫决策过程是强化学习问题的数学模型,由一个五元组(S, A, P, R, γ)组成:
- S是有限的状态集合
- A是有限的动作集合
- P是状态转移概率函数,P(s'|s,a)表示在状态s执行动作a后,转移到状态s&#