1. 背景介绍
随着人工智能技术的迅猛发展,Transformer模型在自然语言处理领域取得了显著的成就。从机器翻译、文本摘要到对话生成,Transformer凭借其强大的特征提取和序列建模能力,成为了众多应用的核心。然而,Transformer模型的训练往往需要大量的用户数据,这引发了对用户隐私保护的担忧。差分隐私技术作为一种重要的隐私保护手段,为解决这一问题提供了新的思路。
1.1 Transformer 模型概述
Transformer模型是一种基于自注意力机制的深度学习架构,它抛弃了传统的循环神经网络结构,采用编码器-解码器结构,并通过自注意力机制捕捉输入序列中各个元素之间的关系。Transformer模型的核心组件包括:
- 自注意力机制 (Self-Attention): 自注意力机制允许模型在编码或解码过程中,关注输入序列中其他相关元素,从而更好地理解上下文信息。
- 多头注意力机制 (Multi-Head Attention): 多头注意力机制通过并行计算多个自注意力,捕捉输入序列的不同方面的信息,增强模型的表达能力。
- 位置编码 (Positional Encoding): 由于Transformer模型没有循环结构,无法捕捉输入序列中元素的顺序信息,因此