1. 背景介绍
1.1 自然语言处理的革命
自然语言处理(NLP)领域近年来经历了巨大的变革,而这其中,Transformer模型的出现功不可没。自2017年Google Brain团队发表论文“Attention is All You Need”以来,Transformer模型凭借其强大的特征提取能力和高效的并行计算优势,迅速成为NLP领域的主流模型架构。从机器翻译、文本摘要到问答系统,Transformer模型在各种NLP任务中都取得了突破性的成果。
1.2 Transformer模型的优势
Transformer模型之所以能够取得如此巨大的成功,主要得益于以下几个方面的优势:
- 自注意力机制(Self-attention):Transformer模型的核心机制,能够捕捉句子中不同词语之间的语义关系,从而更好地理解句子的含义。
- 并行计算:与传统的循环神经网络(RNN)相比,Transformer模型可以进行并行计算,大大提高了训练效率。
- 可扩展性:Transformer模型的结构简单,易于扩展,可以根据任务需求进行调整。</