基于机器学习的短时交通流预测算法的研究与实现
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:
机器学习,交通流预测,时间序列分析,深度学习,支持向量机,神经网络,回归分析,交通大数据
1. 背景介绍
1.1 问题的由来
随着城市化进程的加快,城市交通拥堵问题日益严重,对人们的出行和生活带来诸多不便。为了缓解交通压力,提高道路通行效率,准确预测短时交通流成为交通管理的关键环节。短时交通流预测可以辅助交通管理部门制定合理的交通调度策略,优化信号灯控制,提高道路通行能力,降低交通拥堵和事故风险。
短时交通流预测是交通领域的一个经典问题,其核心目标是根据历史交通数据,预测未来一段时间内的交通流量。随着机器学习技术的飞速发展,基于机器学习的短时交通流预测算法逐渐成为研究热点。
1.2 研究现状
目前,短时交通流预测算法主要分为以下几类:
基于统计模型的算法:如自回归模型(AR)、移动平均模型(MA&#x