基于机器学习的短时交通流预测算法的研究与实现

基于机器学习的短时交通流预测算法的研究与实现

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:

机器学习,交通流预测,时间序列分析,深度学习,支持向量机,神经网络,回归分析,交通大数据

1. 背景介绍

1.1 问题的由来

随着城市化进程的加快,城市交通拥堵问题日益严重,对人们的出行和生活带来诸多不便。为了缓解交通压力,提高道路通行效率,准确预测短时交通流成为交通管理的关键环节。短时交通流预测可以辅助交通管理部门制定合理的交通调度策略,优化信号灯控制,提高道路通行能力,降低交通拥堵和事故风险。

短时交通流预测是交通领域的一个经典问题,其核心目标是根据历史交通数据,预测未来一段时间内的交通流量。随着机器学习技术的飞速发展,基于机器学习的短时交通流预测算法逐渐成为研究热点。

1.2 研究现状

目前,短时交通流预测算法主要分为以下几类:

  1. 基于统计模型的算法:如自回归模型(AR)、移动平均模型(MA&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值