X光安检物品识别算法研究
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
X光安检作为航空、铁路、地铁等公共场所的重要安全措施,对于保障公共安全、预防恐怖袭击具有重要意义。然而,传统的X光安检主要依靠人工判读,存在效率低下、误报率高、易受主观因素影响等问题。随着深度学习技术的快速发展,基于深度学习的X光安检物品识别算法应运而生,成为解决传统安检问题的重要途径。
1.2 研究现状
近年来,基于深度学习的X光安检物品识别算法取得了显著进展,主要包括以下几种类型:
- 卷积神经网络(CNN):CNN具有良好的特征提取和分类能力,在图像识别领域取得了众多突破。将CNN应用于X光安检物品识别,可以有效提取X光图像中的特征,实现对物品的分类识别。
- 循环神经网络(RNN):RNN在处理序列数据方面具有优势,可以用于分析X光图像的动态变化,从而更好地识别复杂物品。
- 卷积循环神经网络(CNN-RNN)