X光安检物品识别算法研究

X光安检物品识别算法研究

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

X光安检作为航空、铁路、地铁等公共场所的重要安全措施,对于保障公共安全、预防恐怖袭击具有重要意义。然而,传统的X光安检主要依靠人工判读,存在效率低下、误报率高、易受主观因素影响等问题。随着深度学习技术的快速发展,基于深度学习的X光安检物品识别算法应运而生,成为解决传统安检问题的重要途径。

1.2 研究现状

近年来,基于深度学习的X光安检物品识别算法取得了显著进展,主要包括以下几种类型:

  • 卷积神经网络(CNN):CNN具有良好的特征提取和分类能力,在图像识别领域取得了众多突破。将CNN应用于X光安检物品识别,可以有效提取X光图像中的特征,实现对物品的分类识别。
  • 循环神经网络(RNN):RNN在处理序列数据方面具有优势,可以用于分析X光图像的动态变化,从而更好地识别复杂物品。
  • 卷积循环神经网络(CNN-RNN)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值