Q-learning, 深度强化学习, 新冠病毒防控, 疫情预测, 资源分配, 决策优化
1. 背景介绍
新冠疫情的爆发对全球社会造成了巨大冲击,突显了公共卫生体系的脆弱性和应对突发公共卫生事件的迫切需求。传统疫情防控方法往往依赖于经验和专家判断,难以应对疫情的复杂性和动态变化。近年来,人工智能技术,特别是深度强化学习(Deep Reinforcement Learning,DRL)在解决复杂决策问题方面展现出巨大的潜力。
Q-learning作为DRL的核心算法之一,通过学习环境的反馈信息,不断优化策略,最终达到最大化奖励的目标。其强大的学习能力和适应性使其成为疫情防控领域的重要工具。
2. 核心概念与联系
2.1 Q-learning算法原理
Q-learning是一种基于价值函数的强化学习算法,其核心思想是通过学习状态-动作对的价值函数,选择最优的动作以最大化长期奖励。
2.2 Q-learning与疫情防控的联系
在疫情防控场景中,我们可以将:
- 状态(State):表示疫情的当前状态,例如感染人数、治愈人数、死亡人数、社会活动水平等。