1. 背景介绍
在自然语言处理(NLP)领域,预训练语言模型(PLM)已经成为一种标准方法,用于从大规模文本数据中学习语言表示。其中,BERT(Bidirectional Encoder Representations from Transformers)是一种 transformer-based PLM,在NLP任务上取得了显著的成功。然而,BERT是基于英语数据预训练的,这限制了其在其他语言上的表现。本文将介绍BERTimbau,一个葡萄牙语BERT模型,旨在改善葡萄牙语NLP任务的性能。
2. 核心概念与联系
BERTimbau是基于BERT的预训练模型,采用了相同的架构和预训练目标。其核心概念包括:
- Transformer模型:BERTimbau使用了transformer模型,该模型由自注意力机制组成,可以处理序列数据。
- 预训练目标:BERTimbau的预训练目标是masked language modeling(MLM)和下一句预测(NSP),这两个任务可以帮助模型学习到语言表示。
- 葡萄牙语数据集:BERTimbau使用了大规模的葡萄