Transformer大模型实战 葡萄牙语的BERTimbau模型

1. 背景介绍

在自然语言处理(NLP)领域,预训练语言模型(PLM)已经成为一种标准方法,用于从大规模文本数据中学习语言表示。其中,BERT(Bidirectional Encoder Representations from Transformers)是一种 transformer-based PLM,在NLP任务上取得了显著的成功。然而,BERT是基于英语数据预训练的,这限制了其在其他语言上的表现。本文将介绍BERTimbau,一个葡萄牙语BERT模型,旨在改善葡萄牙语NLP任务的性能。

2. 核心概念与联系

BERTimbau是基于BERT的预训练模型,采用了相同的架构和预训练目标。其核心概念包括:

  • Transformer模型:BERTimbau使用了transformer模型,该模型由自注意力机制组成,可以处理序列数据。
  • 预训练目标:BERTimbau的预训练目标是masked language modeling(MLM)和下一句预测(NSP),这两个任务可以帮助模型学习到语言表示。
  • 葡萄牙语数据集:BERTimbau使用了大规模的葡萄
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值