4.23算法题(二分查找)

今天的算法题以二分查找为主。

力扣33.搜索旋转排序数组

33. 搜索旋转排序数组

整数数组 nums 按升序排列,数组中的值 互不相同

在传递给函数之前,nums 在预先未知的某个下标 k0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2]

给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4

示例 2:

输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1

示例 3:

输入:nums = [1], target = 0
输出:-1

提示:

  • 1 <= nums.length <= 5000
  • -104 <= nums[i] <= 104
  • nums 中的每个值都 独一无二
  • 题目数据保证 nums 在预先未知的某个下标上进行了旋转
  • -104 <= target <= 104

题目分析

升序数列,查找一个target,时间复杂度为 O(log n) ,我们使用二分法解答。

解题思路

这道题与经典二分法不同的地方在于,这个数组将后面部分的元素旋转到前面来了,导致整个数组并不是标准的升序数组。但其实对我们使用二分法的影响不大,我们只需要分清楚target在数组中的位置分几种情况就可以。我们先将二分法的开头打出来(定义left,right,while循环,定义mid),我们这里使用闭区间做法。接下来我们开始分析target在数组中的几种情况:

  1. nums[mid]==target:直接返回mid。
  2. **数组的left小于mid:**我们首先可以确定mid及其以前的数组肯定是升序的,是旋转得来的,因为未旋转的数组部分都会小于旋转数组的第一个元素。如数组[4,5,6,7,0,1],此时mid(=2,为6)及其以前的数组元素全是旋转得来的。因此我们可以列出nums[mid]>target&&nums[left]<=target的情况:在这个情况下的target位于升序数组中,正常二分法操作让right=mid-1;即可。如果target不在这个情况内,我们就移动left=mid+1,接下来就会转到第3种的情况中。
  3. **数组的left大于mid:**与上一种情况类似的推理,我们可以确定mid及其以后的数组肯定是升序的,是未旋转的部分。如数组[4,5,-2,-1,0,1,2],此时mid(=3,为-1)及其以后的数组全是未旋转的。因此我们可以列出nums[mid]<target&&nums[right]>=target的情况:在这个情况下的target位于升序数组中,正常二分法操作让left=mid+1;即可。如果target不在这个情况内,我们就移动left=mid+1,接下来就会转到第2种的情况中。

情况分完了,依次用if判断填入循环中即可。while循环结束后,如果没有找到target,就返回-1。

代码实现

int search(int* nums, int numsSize, int target) {
    int left=0,right=numsSize-1;
    while(left<=right){
        int mid=left+((right-left)/2);
        if(nums[mid]==target) return mid;
        if(nums[left]<=nums[mid]){
            if(nums[mid]>target&&nums[left]<=target){
                right=mid-1;
            }
            else left=mid+1;
        }else{
            if(nums[mid]<target&&nums[right]>=target){
                left=mid+1;
            }
            else right=mid-1;
        }
    }
    return -1;
}

力扣34.在排序数组中查找元素的第一个和最后一个位置

34. 在排序数组中查找元素的第一个和最后一个位置

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

提示:

  • 0 <= nums.length <= 105
  • -109 <= nums[i] <= 109
  • nums 是一个非递减数组
  • -109 <= target <= 109

题目分析

数组中有重复元素,因此这道题需要使用两次二分法,用来确定左边界和右边界。

解题思路

这道题也不像传统二分查找一样只查找一个target元素,而是要查找到target元素开始出现的地址和最后出现的地址。并且这道题里面的数组元素会重复,这也是不能直接使用二分法的原因之一,因为如果查找的target出现了两次及以上,二分法便没法传出一个准确的地址。因此我们需要在使用二分法时,添加对重复元素开始出现和最后出现的位置进行判断。

因为要使用两次二分法,所以我们列两个函数,分别求出左边界和右边界。二分法的开头还是不变,定义完mid后,我们就要对重复元素位置进行判断。以searchLeftBorder为例,当出现nums[mid]==target的情况时,我们一定要判断此时的mid是不是target第一次出现的位置。我们的判断方式为:先将mid的值赋给LeftBorder,**然后移动right到mid的前一位。**如果mid的前一位元素值不是target,那么前面对LeftBorder的赋值就是正确的,等循环结束返回LeftBorder即可;如果mid的前一位元素值还是target,那么此时nums[right]的值就还为target,不会漏掉target先前出现的地址,接着进行循环,直到mid的前一位元素值不是target为止。

searchRightBorder的情况与上面类似。列完两个函数后,在主函数中引用得到左右边界的地址,再创建一个新的两位元素的数组,将左右边界赋值给新数组,输出即可。

代码实现

/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
int searchLeftBorder(int *nums, int numsSize, int target){
    int left=0,right=numsSize-1;
    int LeftBorder=-1;
    while(left<=right){
        int mid=left+(right-left)/2;
        if(nums[mid]==target){
            LeftBorder=mid;
            right=mid-1;
        }else if(nums[mid]<target){
            left=mid+1;
        }
        else right=mid-1;
    }
    return LeftBorder;
}

int searchRightBorder(int *nums, int numsSize, int target){
    int left=0,right=numsSize-1;
    int RightBorder=-1;
    while(left<=right){
        int mid=left+(right-left)/2;
        if(nums[mid]==target){
            RightBorder=mid;
            left=mid+1;
        }
        else if(nums[mid]>target){
            right=mid-1;
        }
        else left=mid+1;
    }
    return RightBorder;
}

int* searchRange(int* nums, int numsSize, int target, int* returnSize) {
    int* returnNums=(int*)malloc(sizeof(int)*2);
    int RightBorder=searchRightBorder(nums, numsSize, target);
    int LeftBorder=searchLeftBorder(nums, numsSize, target);
    *returnSize=2;
    returnNums[0]=LeftBorder;
    returnNums[1]=RightBorder;
    return returnNums;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值