今天的算法题以二分查找为主。
力扣33.搜索旋转排序数组
整数数组 nums
按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums
在预先未知的某个下标 k
(0 <= k < nums.length
)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7]
在下标 3
处经旋转后可能变为 [4,5,6,7,0,1,2]
。
给你 旋转后 的数组 nums
和一个整数 target
,如果 nums
中存在这个目标值 target
,则返回它的下标,否则返回 -1
。
你必须设计一个时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4
示例 2:
输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1
示例 3:
输入:nums = [1], target = 0
输出:-1
提示:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
nums
中的每个值都 独一无二- 题目数据保证
nums
在预先未知的某个下标上进行了旋转 -104 <= target <= 104
题目分析
升序数列,查找一个target,时间复杂度为 O(log n)
,我们使用二分法解答。
解题思路
这道题与经典二分法不同的地方在于,这个数组将后面部分的元素旋转到前面来了,导致整个数组并不是标准的升序数组。但其实对我们使用二分法的影响不大,我们只需要分清楚target在数组中的位置分几种情况就可以。我们先将二分法的开头打出来(定义left,right,while循环,定义mid),我们这里使用闭区间做法。接下来我们开始分析target在数组中的几种情况:
nums[mid]==target
:直接返回mid。- **数组的left小于mid:**我们首先可以确定mid及其以前的数组肯定是升序的,是旋转得来的,因为未旋转的数组部分都会小于旋转数组的第一个元素。如数组
[4,5,6,7,0,1]
,此时mid(=2,为6)及其以前的数组元素全是旋转得来的。因此我们可以列出nums[mid]>target&&nums[left]<=target
的情况:在这个情况下的target位于升序数组中,正常二分法操作让right=mid-1;
即可。如果target不在这个情况内,我们就移动left=mid+1,接下来就会转到第3种的情况中。 - **数组的left大于mid:**与上一种情况类似的推理,我们可以确定mid及其以后的数组肯定是升序的,是未旋转的部分。如数组
[4,5,-2,-1,0,1,2]
,此时mid(=3,为-1)及其以后的数组全是未旋转的。因此我们可以列出nums[mid]<target&&nums[right]>=target
的情况:在这个情况下的target位于升序数组中,正常二分法操作让left=mid+1;
即可。如果target不在这个情况内,我们就移动left=mid+1,接下来就会转到第2种的情况中。
情况分完了,依次用if判断填入循环中即可。while循环结束后,如果没有找到target,就返回-1。
代码实现
int search(int* nums, int numsSize, int target) {
int left=0,right=numsSize-1;
while(left<=right){
int mid=left+((right-left)/2);
if(nums[mid]==target) return mid;
if(nums[left]<=nums[mid]){
if(nums[mid]>target&&nums[left]<=target){
right=mid-1;
}
else left=mid+1;
}else{
if(nums[mid]<target&&nums[right]>=target){
left=mid+1;
}
else right=mid-1;
}
}
return -1;
}
力扣34.在排序数组中查找元素的第一个和最后一个位置
给你一个按照非递减顺序排列的整数数组 nums
,和一个目标值 target
。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target
,返回 [-1, -1]
。
你必须设计并实现时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
提示:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
nums
是一个非递减数组-109 <= target <= 109
题目分析
数组中有重复元素,因此这道题需要使用两次二分法,用来确定左边界和右边界。
解题思路
这道题也不像传统二分查找一样只查找一个target元素,而是要查找到target元素开始出现的地址和最后出现的地址。并且这道题里面的数组元素会重复,这也是不能直接使用二分法的原因之一,因为如果查找的target出现了两次及以上,二分法便没法传出一个准确的地址。因此我们需要在使用二分法时,添加对重复元素开始出现和最后出现的位置进行判断。
因为要使用两次二分法,所以我们列两个函数,分别求出左边界和右边界。二分法的开头还是不变,定义完mid后,我们就要对重复元素位置进行判断。以searchLeftBorder
为例,当出现nums[mid]==target
的情况时,我们一定要判断此时的mid是不是target第一次出现的位置。我们的判断方式为:先将mid的值赋给LeftBorder,**然后移动right到mid的前一位。**如果mid的前一位元素值不是target,那么前面对LeftBorder的赋值就是正确的,等循环结束返回LeftBorder即可;如果mid的前一位元素值还是target,那么此时nums[right]的值就还为target,不会漏掉target先前出现的地址,接着进行循环,直到mid的前一位元素值不是target为止。
searchRightBorder
的情况与上面类似。列完两个函数后,在主函数中引用得到左右边界的地址,再创建一个新的两位元素的数组,将左右边界赋值给新数组,输出即可。
代码实现
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int searchLeftBorder(int *nums, int numsSize, int target){
int left=0,right=numsSize-1;
int LeftBorder=-1;
while(left<=right){
int mid=left+(right-left)/2;
if(nums[mid]==target){
LeftBorder=mid;
right=mid-1;
}else if(nums[mid]<target){
left=mid+1;
}
else right=mid-1;
}
return LeftBorder;
}
int searchRightBorder(int *nums, int numsSize, int target){
int left=0,right=numsSize-1;
int RightBorder=-1;
while(left<=right){
int mid=left+(right-left)/2;
if(nums[mid]==target){
RightBorder=mid;
left=mid+1;
}
else if(nums[mid]>target){
right=mid-1;
}
else left=mid+1;
}
return RightBorder;
}
int* searchRange(int* nums, int numsSize, int target, int* returnSize) {
int* returnNums=(int*)malloc(sizeof(int)*2);
int RightBorder=searchRightBorder(nums, numsSize, target);
int LeftBorder=searchLeftBorder(nums, numsSize, target);
*returnSize=2;
returnNums[0]=LeftBorder;
returnNums[1]=RightBorder;
return returnNums;
}