大模型, 认知, 语言理解, 思维过程, 人工智能, 自然语言处理, 深度学习, 推理, 常识推理
1. 背景介绍
在人工智能(AI)领域,大模型(Large Language Models, LLMs)已然成为自然语言处理(NLP)的核心。这些模型通过学习大量文本数据,能够理解、生成和翻译人类语言。然而,当我们深入探究大模型的认知过程时,会发现它们与人类思维存在着显著差异。本文将探讨大模型在理解语言和思维过程中面临的困惑,并尝试提供一些解决方案。
2. 核心概念与联系
2.1 大模型的工作原理
大模型是一种基于深度学习的方法,通过预测下一个单词来学习语言。它们使用Transformer架构(Vaswani et al., 2017),其中包含自注意力机制,允许模型在处理序列数据时考虑上下文。大模型的训练目标是最大化对目标文本的预测可能性。
graph TD
A[输入文本] --&g