import java.util.Scanner;
public class yanghui002 {
// 给定杨辉三角形 将其所有的数字按照从上到下从左向右排成一行,给定一个数字N
// 输出N所在位置
// 对于所有的N满足 1<=N<=1000000000
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long N = sc.nextLong();
if (N == 1) {
System.out.println(1);
return;
}
// 在杨辉三角中c(2,i-1)表示第i行最大值
// 判断首次出现超出10亿的数据所在的行为多少
// for(long i = 3;;i++) {
// if((i-1)*(i-2)>2000000000) {
// System.out.println(i);
// return;
// }
// }
// 计算得出首次最大值超出数据范围的值出现在44723行 则给定的key一定在44722行内出现
// 运用一维数组存储每一行的数据 最大数据个数为44723个
long[] num = new long[44724];
num[1] = 1; // 设置第一行的初始元素
// 从第二行开始依次计算每一行的杨辉三角值 并于key进行对比
for (int i = 2; i <= 44722; i++) {
for (int j = i; j >= 1; j--) {
num[j] = num[j] + num[j - 1];
// 此循环为计算每一行的值 此时由于是从后向前算 并非j位置而是i-j+1位置 即当处于3行时是从最后一个数向前算的
//实际判断条件就是判断最后一个数是否为key 但首次满足的应该是其对称项
//即i-j+1第一个 杨辉三角具有对称性 例如:第一个==最后一个
if (num[j] == N) {
// 找到这个数字 根据等差数列 1 2 3 4 ...N-1行的总元素个数为(N*(N-1))/2
// 所以当前数字所在数组的位置(从1开始)为(N*(N-1))/2+j
long res = ((i * (i - 1)) >> 1 )+i- j+1;
System.out.println(res);
return;
}
}
}
// 若在前44722行杨辉三角都未找到这个值 已知杨辉三角的44723行只有前两个数字是满足数据范围内的且第一个数字为1
// 由此可知 若前面未找到此数据 则此数据必然位于第44723行的第2个位置 直接输出即可
long res = (N*(N+1)/2) + 2;
System.out.println(res);
}
}
蓝桥杯--杨辉三角形【第十二届】【省赛】【研究生组】Java
最新推荐文章于 2024-05-02 12:16:43 发布
该篇文章介绍了使用Java编程语言解决杨辉三角问题,给定一个数字N,确定其在杨辉三角中的行数。通过计算得出,当N大于1时,N所在的行数可以通过一维数组存储的杨辉三角最大值来确定,或者直接计算出在44723行的第2个位置。
摘要由CSDN通过智能技术生成