蓝桥杯--杨辉三角形【第十二届】【省赛】【研究生组】Java

该篇文章介绍了使用Java编程语言解决杨辉三角问题,给定一个数字N,确定其在杨辉三角中的行数。通过计算得出,当N大于1时,N所在的行数可以通过一维数组存储的杨辉三角最大值来确定,或者直接计算出在44723行的第2个位置。
摘要由CSDN通过智能技术生成
import java.util.Scanner;

public class yanghui002 {
	// 给定杨辉三角形 将其所有的数字按照从上到下从左向右排成一行,给定一个数字N
	// 输出N所在位置
	// 对于所有的N满足 1<=N<=1000000000

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		long N = sc.nextLong();
		if (N == 1) {
			System.out.println(1);
			return;
		}
		// 在杨辉三角中c(2,i-1)表示第i行最大值
		// 判断首次出现超出10亿的数据所在的行为多少
//		for(long i = 3;;i++) {
//			if((i-1)*(i-2)>2000000000) {
//				System.out.println(i);
//				return;
//			}
//		}
		// 计算得出首次最大值超出数据范围的值出现在44723行 则给定的key一定在44722行内出现
		// 运用一维数组存储每一行的数据 最大数据个数为44723个
		long[] num = new long[44724];
		num[1] = 1; // 设置第一行的初始元素
		// 从第二行开始依次计算每一行的杨辉三角值 并于key进行对比
		for (int i = 2; i <= 44722; i++) {
			for (int j = i; j >= 1; j--) {
				num[j] = num[j] + num[j - 1];
				// 此循环为计算每一行的值 此时由于是从后向前算 并非j位置而是i-j+1位置 即当处于3行时是从最后一个数向前算的
				//实际判断条件就是判断最后一个数是否为key 但首次满足的应该是其对称项
				//即i-j+1第一个 杨辉三角具有对称性 例如:第一个==最后一个
				if (num[j] == N) {
					// 找到这个数字 根据等差数列 1 2 3 4 ...N-1行的总元素个数为(N*(N-1))/2
					// 所以当前数字所在数组的位置(从1开始)为(N*(N-1))/2+j
					long res = ((i * (i - 1)) >> 1 )+i- j+1;
					System.out.println(res);
					return;
				}

			}
		}
		// 若在前44722行杨辉三角都未找到这个值 已知杨辉三角的44723行只有前两个数字是满足数据范围内的且第一个数字为1
		// 由此可知 若前面未找到此数据 则此数据必然位于第44723行的第2个位置 直接输出即可
		long res = (N*(N+1)/2) + 2;
		System.out.println(res);

	}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值