🌟 嗨,我是Lethehong!🌟
🌍 立志在坚不欲说,成功在久不在速🌍
🚀 欢迎关注:👍点赞⬆️留言收藏🚀
🍀欢迎使用:小智初学计算机网页IT深度知识智能体
🚀个人博客:Lethehong有一起互链的朋友可以私信我
✅GPT体验码:私信博主~免费领取体验码
欢迎大家加入Lethehong的知识星球里面有全栈资料大全
✅ 高质量内容:相比免费内容,付费社群的干货更多,更新更系统。
✅ 实战导向:提供可运行的代码和策略,而非纯理论。
✅ 行业人脉:可与同行交流,获取内推机会。
✅ 持续更新:长期维护,而非一次性课程。✅GPT体验码:https://gitee.com/lethehong/chatgpt-share
优质专栏:
目录
2.3 JupyterLab 相比 Jupyter Notebook 的进化
七、总结:蓝耘平台中的 JupyterLab 是现代科研与开发的理想工具
注册蓝耘智算平台
1. 点击注册链接:蓝耘智算平台
2. 进入下面图片界面,输入手机号并获取验证码,输入邮箱,设置密码,点击注册
3、注册成功后,点击容器云市场
4、这里点击“立即购买”(大家可以根据自己的需求做选择)
5、进去之后,划到最底部即可进行选择自己需要的实例,然后点击立即购买
6、会自动跳转到此界面,等待创建成功即可
7、显示“运行中”即可使用此实例了,可以通过ssh登录
8、点击上图中的实用工具即可进行选择自己喜欢的源和工具
9、也可以在点击7里面的JupyterLa按钮跳转至下面这个界面使用
一、前言:JupyterLab 在云原生时代的角色
1.1 数据驱动与 AI 驱动的时代
在数据驱动与 AI 驱动的时代,计算机科学的每个领域都在经历前所未有的变革。随着大数据和深度学习技术的不断进步,如何高效处理和分析数据成为了科学研究、工业应用和商业决策的核心问题。面对如此庞大和复杂的数据,交互式计算工具的出现提供了巨大的帮助,而 JupyterLab 正是其中的佼佼者。
JupyterLab 在数据科学家和机器学习工程师的日常工作中扮演着至关重要的角色。其开源、交互式的特点,使得 JupyterLab 成为理想的实验环境。从数据预处理到模型构建,从可视化到结果分析,JupyterLab 通过提供一个整合的开发环境,极大地简化了数据科学的工作流。
1.2 JupyterLab 的云原生优势
随着云计算和容器化技术的普及,JupyterLab 在云原生平台上展现出了更强的灵活性和可扩展性。云原生平台的核心特性包括自动化管理、弹性计算资源、分布式计算等,这使得 JupyterLab 能够在大规模、分布式的环境中运行,进一步提升了它的计算能力和资源利用率。
蓝耘平台作为一个云原生平台,通过 Kubernetes 和容器技术,为 JupyterLab 提供了更强大的资源调度与管理功能。平台内的自动化调度、镜像定制与高效 GPU 资源分配,确保了在运行 JupyterLab 时的高性能表现。
二、JupyterLab 基础理论与架构剖析
2.1 Jupyter 项目概述
Jupyter(来自 Julia + Python + R)是一个开源的交互式计算平台,最初源于 IPython 项目,现已发展成为支持多种编程语言的交互式计算平台。Jupyter 项目为用户提供了一种统一的方式来运行代码、处理数据、绘制图表并撰写文档。它的核心构件包括:
-
Jupyter Notebook: 作为 Jupyter 的核心,Notebook 提供了一个基于浏览器的界面,用户可以在其中执行代码、生成图形、展示文本说明。
-
内核(Kernel): 负责执行代码并返回计算结果,Jupyter 支持多种编程语言,如 Python、R、Julia 等。
-
JupyterLab: 作为 Jupyter 项目的下一代产品,JupyterLab 提供了更多的灵活性、可扩展性和功能性。
2.2 JupyterLab 的核心架构
JupyterLab 的架构设计非常灵活,前端使用了 TypeScript 和 React,后端使用 Python。核心架构可以分为以下几个主要组件:
-
文档管理器: JupyterLab 的前端包括一个文档管理器,可以浏览文件、编辑代码和文本,同时支持终端命令执行等功能。
-
Kernel 管理器: Kernel 是 JupyterLab 的执行引擎,它负责运行代码并返回结果。JupyterLab 支持多内核的管理,用户可以根据需要选择不同的内核(如 Python、R、Julia 等)。
-
扩展机制: JupyterLab 提供了强大的扩展机制,用户可以通过插件来扩展功能,如集成 Git、TensorBoard、语言服务器协议(LSP)等。
2.3 JupyterLab 相比 Jupyter Notebook 的进化
JupyterLab 是 Jupyter 团队为替代经典 Notebook 所设计的下一代用户界面,提供了更现代化、更灵活的 IDE 风格界面。
功能维度 | Jupyter Notebook | JupyterLab |
---|---|---|
多文档支持 | 单文档(单页面) | 多标签、拖拽支持 |
插件系统 | 限制较多 | 丰富的插件生态 |
编辑器支持 | 仅 notebook | 支持 .py/.csv 等 |
UI 框架 | 单页 Web UI | React + Phosphor |
JupyterLab 基于 TypeScript 和 React 构建前端,后端依赖 Jupyter Server,模块化架构便于扩展、插件开发与环境定制。
三、JupyterLab 功能详解
3.1 多语言支持
JupyterLab 支持超过 40 种编程语言,包括 Python、R、Julia 等。通过选择不同的内核,用户可以在同一个环境中使用不同的编程语言进行开发。这对于科研人员而言尤为重要,因为他们通常需要处理多种语言的数据和模型,JupyterLab 提供了一种统一的编程环境。
例如,在处理数据分析时,Python 可能是首选语言;而在统计分析时,R 语言则可能更为合适。用户可以在同一环境中灵活切换内核,提升工作效率。
3.2 丰富的交互组件
JupyterLab 的最大优势之一是其强大的交互式功能。用户可以直接在 JupyterLab 中创建、修改和展示代码、文本和图表,极大地提升了数据科学工作流的效率。
-
Markdown 支持: 用户可以使用 Markdown 格式来编写文本说明,配合 LaTeX 渲染公式,可以进行学术写作或报告生成。
-
图表与可视化: JupyterLab 支持 Matplotlib、Plotly、Bokeh 等可视化库,用户可以通过简单的 Python 代码生成图表,展示数据分析的结果。
3.3 Git 集成与版本控制
JupyterLab 支持直接通过扩展集成 Git 功能,用户可以在 UI 中查看文件的版本历史、提交修改并推送到远程仓库。Git 集成的加入,使得团队合作与项目管理变得更加高效,用户无需切换到命令行即可进行版本控制。
3.4 Terminal 与 Shell 支持
JupyterLab 提供了集成终端,用户可以直接在浏览器中进行命令行操作。这对于安装包、执行脚本或配置环境等任务非常有用。用户可以通过终端进行 Conda、pip 等命令的执行,管理 Python 环境与依赖包。
3.5 数据查看器与调试器
JupyterLab 提供了数据查看器功能,可以直接打开 CSV、Parquet 等格式的数据文件进行查看。结合调试器插件,用户可以更好地调试复杂项目,进行单步执行和变量监控。
四、蓝耘平台上的 JupyterLab 优势分析
蓝耘平台是面向 AI、科研与企业智能化场景打造的云原生智算平台。它通过 Kubernetes + Docker 技术栈,提供分布式 GPU 资源调度、弹性容器运行、镜像管理、Notebook 服务、模型管理、作业调度等功能。
4.1 云原生架构优势
蓝耘平台基于 Kubernetes 和 容器化技术,能够提供更强大的计算和资源管理能力。在蓝耘平台上部署 JupyterLab,相比传统的本地环境,具备以下优势:
-
快速启动: 在蓝耘平台上,用户可以通过容器技术实现 JupyterLab 的秒级启动,节省了资源和时间。
-
资源隔离: 每个用户或团队使用独立的容器,确保了任务和数据的隔离,提高了安全性。
-
自动扩展: 蓝耘平台根据任务负载自动分配计算资源,确保高效利用集群计算资源。
4.2 镜像定制与版本控制
蓝耘平台为用户提供了定制 Docker 镜像的能力。用户可以选择平台提供的基础镜像(如 PyTorch、TensorFlow 镜像),也可以根据需要定制镜像,创建专属的 JupyterLab 环境。
4.3 GPU 加速支持
蓝耘平台提供了自动 GPU 调度功能,能够根据任务需求自动为 JupyterLab 容器分配 GPU 资源。对于深度学习模型训练,这一功能至关重要,可以显著提升训练速度。
4.4 数据挂载与持久化
蓝耘平台支持与分布式存储系统(如 Ceph、NFS)集成,能够实现数据挂载与持久化存储。用户的数据与 Notebook 文件在任务停止后依然可以保留,确保数据安全。
4.5 多用户协作与权限控制
通过平台的统一身份认证与 RBAC(角色基础访问控制)策略,蓝耘平台能够管理多用户的权限,确保团队协作时的数据安全和项目隔离。
4.6 用户体验优化
-
浏览器一键进入: 无需 SSH 或 VPN,浏览器中直接打开 JupyterLab 环境。
-
GPU 使用监控: 页面中集成 GPU 监控插件,实时查看显存利用率、功耗等。
-
任务续跑与断点恢复: 中断后自动保存状态,任务可在下次登录时恢复运行。
五、通过 SSH 安装与启动 JupyterLab
5.1 安装前准备
-
确保蓝耘平台账户已开通,并拥有相应的 SSH 访问权限。
-
推荐使用 Ubuntu 20.04 或更高版本。
5.2 安装步骤
-
更新系统包,安装依赖:
sudo apt update && sudo apt upgrade -y
1. install the package maintainer's version:安装 Package Maintainer 的版本
2. keep the local version currently installed:保持当前安装的本地版本
3. show the differences between the versions:显示版本之间的差异
4. show a side-by-side difference between the versions:并排显示版本之间的差异 5. show a 3-way difference between available versions:显示可用版本之间的 3 向差异 6. do a 3-way merge between available versions:在可用版本之间执行 3 向合并 7. start a new shell to examine the situation:启动一个新的 shell 来检查情况 -
安装 Python 和 pip:
sudo apt install python3 python3-pip -y
-
安装 JupyterLab:
pip3 install jupyterlab
-
可选:安装常用的 Python 包,如 Matplotlib、Numpy 等:(可能有点慢,稍安勿躁)
pip install ipykernel matplotlib pandas numpy
5.3 生成配置文件与设置密码
生成配置文件并设置 JupyterLab 登录密码:
jupyter lab --generate-config jupyter notebook password
5.4 启动 JupyterLab
启动 JupyterLab 实例:(图中提示的服务,大家有需要也可自行安装)
jupyter lab --no-browser --port=8888
--allow-root:绕过root执行
启动后我们任意选择一个连接在浏览器打开即可
5.5 注册内核来使用虚拟环境
- 安装ipyernel用于管理Jupyter内核
pip install ipykernel
- 注册jupyter为Jupyter可用内核Lethehong(内核名,自定义),启动Jupyter运行cell
python -m ipykernel install --user --name jupyter --display-name "Lethehong"
- 查看已注册的内核
jupyter kernelspec list
- 删除已注册的内核
jupyter kernelspec uninstall 内核名称
六、使用建议与最佳实践
6.1 使用虚拟环境管理项目依赖
为了避免项目间的依赖冲突,建议使用 conda 或 virtualenv 来管理项目依赖。通过为每个项目创建独立的虚拟环境,能够确保不同项目使用的库和版本不互相干扰。
6.2 合理规划 Notebook 文件结构
为了便于管理和维护,建议按项目、实验或功能模块对 Notebook 文件进行分类存放。确保每个文件夹下的内容与当前任务高度相关,有利于版本控制与团队协作。
6.3 自动保存与备份
建议设置 JupyterLab 的自动保存频率,并结合蓝耘平台的持久存储,确保数据的安全与文件的及时备份。
6.4 安全性建议
-
禁用 root 用户运行 JupyterLab。
-
启用 HTTPS,确保通信安全。
七、总结:蓝耘平台中的 JupyterLab 是现代科研与开发的理想工具
JupyterLab 本身是一套强大灵活的交互式计算工具,而蓝耘平台通过其云原生、容器化架构,将 JupyterLab 的能力放大到极致。无论是深度学习研究者、数据科学家,还是 AI 教育工作者,借助蓝耘平台的 JupyterLab,不仅能够获得高效的开发体验,也能享受到资源调度、安全隔离、环境一致性等平台化能力带来的全新生产力。
JupyterLab 让我们重构交互式开发方式,蓝耘平台让这一切更高效、更稳定、更具可扩展性。
蓝耘平台为 JupyterLab 提供了一个高效、安全、灵活的运行环境。结合 Kubernetes、容器化技术以及 GPU 加速支持,平台不仅提升了 JupyterLab 的性能,还优化了用户的计算资源管理。通过本篇技术文章,我们详细分析了 JupyterLab 的功能、架构以及在蓝耘平台上的优势,并提供了完整的安装与使用指南。通过这些实践和建议,用户可以更加高效地在云环境中进行数据科学和 AI 模型训练。