- 博客(30)
- 收藏
- 关注
原创 使用VSCode开发FastAPI指南
FastAPI是一个高性能Python Web框架,适合构建API和微服务。本教程演示如何在VS Code中使用FastAPI开发杂货清单应用,包括环境设置和代码实现。首先创建Python虚拟环境并安装fastapi、redis等依赖项。然后编写基础API路由,使用Pydantic定义数据模型,实现添加/查询商品功能。教程详细介绍了调试配置、端口设置以及通过/docs界面测试API的方法。项目展示了FastAPI的自动验证、文档生成等特性,帮助开发者快速构建RESTful服务。
2025-06-12 09:29:13
549
原创 在VSCode中使用Ultralytics扩展
VS Code 的 Ultralytics-snippets 扩展是一款提升开发效率的工具,专为 Ultralytics 应用开发设计。该扩展通过智能代码补全、预置代码片段和自动化任务,帮助开发者快速编写高质量代码。主要功能包括:1)一键插入常用代码模板(如模型初始化、结果处理);2)支持自定义变量名和快速导航;3)覆盖关键参数、示例代码等实用类别;4)兼容 YOLO、SAM 等多种模型。安装后输入前缀「ultra」即可调用,显著简化开发流程,是高效构建 Ultralytics 应用的得力助手。
2025-06-08 19:10:02
1408
原创 YOLO11解决方案之分析
Ultralytics基于YOLO11提供了多种现实世界解决方案,包括物体计数、追踪和安全监控等功能。它支持三种数据可视化类型:折线图(适合趋势分析)、条形图(适合类别对比)和饼图(适合比例展示)。该框架提供Python API,可处理视频流并实时生成分析结果,参数包括检测置信度、跟踪算法选择和可视化选项。不同分析类型(线图、面积图、条形图、饼图)均可直观展示检测数据,适用于安防监控、交通分析等多种场景。
2025-06-07 17:29:07
866
原创 使用VSCode开发Django指南
摘要: 本文介绍了使用VSCode开发Django应用的基本流程。首先创建虚拟环境并安装Django,然后通过django-admin命令初始化项目结构,运行开发服务器验证配置。接着创建Django应用,配置URL路由和视图函数,最终实现一个简单的“Hello, Django”页面。此外,还指导如何配置VSCode的调试启动文件(launch.json),方便快速运行和调试项目。通过虚拟环境隔离依赖,结合VSCode的终端、代码编辑和调试功能,为开发者提供了高效的Django开发体验。
2025-06-06 21:14:38
1441
原创 使用VSCode开发Flask指南
摘要:本文介绍了如何在VSCode中开发一个简单的Flask应用。Flask是一个轻量级Python Web框架,依赖扩展实现表单验证、数据库等功能。文章详细讲解了创建虚拟环境、安装Flask、编写"Hello Flask"示例、使用调试器、模板渲染和静态文件管理等步骤。重点包括:通过Jinja模板引擎实现页面继承,创建代码片段提高模板开发效率,以及使用VSCode的智能提示和调试功能。
2025-06-05 09:46:22
1621
原创 使用FastAPI构建车牌检测识别服务
本文介绍了基于YOLOv11和CRNN的车牌检测识别系统。系统采用YOLOv11进行高效车牌检测,通过CCPD数据集训练获得高精度模型。识别部分使用CRNN网络,在多种车牌数据集上训练,实现准确的车牌内容识别。核心代码封装在PlateRecognizer类中,包含检测识别、结果标注等功能。该系统借助深度学习技术,实现了从输入图像到车牌识别的完整流程,具有较高的实用性和准确性,适用于多种实际应用场景。
2025-06-02 20:06:07
1088
原创 使用VSCode在WSL和Docker中开发
通过WSL,开发人员可以安装 Linux 发行版,并直接在 Windows 上使用 Linux 应用程序、实用程序和 Bash 命令行工具,不用进行任何修改,也无需使用传统虚拟机或设置成双启动系统。借助 Docker Desktop for Windows 中支持的 WSL 2 后端,可以在基于 Linux 的开发环境中工作并生成基于 Linux 的容器,同时使用 Visual Studio Code 进行代码编辑和调试。
2025-05-31 15:03:20
1341
原创 YOLO11解决方案之语义图像搜索
本方案使用OpenAI CLIP、Meta FAISS 构建语义图像搜索引擎,通过将 CLIP 强大的可视化语言嵌入与 FAISS 高效的近邻搜索相结合,使用自然语言查询检索相关图像。本方案使用Flask构建演示WEB Server,建立了一个功能齐全的WEB图像搜索系统。
2025-05-27 11:13:53
840
原创 YOLO11解决方案之区域追踪探索
TrackZone 用来监控指定区域内的目标,而不是整个画面,它基于 Ultralytics YOLO11,专门在视频和实时摄像机传输的区域内集成了目标检测和跟踪功能。YOLO11 TrackZone 的先进算法和深度学习技术使其成为实时应用的完美选择,可在人群监控和安防等应用中提供精确、高效的目标跟踪。
2025-05-25 21:04:57
1237
原创 YOLO11解决方案之使用 Streamlit 应用程序进行实时推理
Streamlit 使构建和部署交互式网络应用程序变得简单,将其与Ultralytics YOLO11 结合使用,可以直接在浏览器中进行实时对象检测和分析。YOLO11 的高精度和高速度确保了实时视频流的流畅性能,能够帮助用户快速分析视频流。
2025-05-24 16:33:03
680
原创 YOLO11解决方案之速度估算探索
YOLO11速度估计结合物体检测与跟踪技术,通过计算物体在帧间的移动距离和帧频来估算速度,适用于交通分析、自动驾驶和安全分析等场景。本文展示了如何使用Python实现速度估计的演示界面,支持在图像中画线或框,并输出叠加了类别和速度的视频。文章还介绍了基于Tkinter的GUI演示程序,用户可以通过界面打开视频文件、绘制检测区域,并实时查看物体速度信息。
2025-05-23 20:29:00
1071
原创 YOLO11解决方案之VisonEye对象映射
Ultralytics的VisionEye解决方案利用YOLO模型实现物体识别与跟踪,模拟人眼视角,从固定点聚焦并绘制物体路径。其核心功能包括物体检测、跟踪和空间关系可视化,适用于安防监控、零售分析、运动分析、自动驾驶及人机交互等场景。通过结合距离计算或速度估算,VisionEye可构建更复杂的综合系统。演示代码展示了如何使用VisionEye处理视频,并实时显示物体与视觉点之间的距离。
2025-05-21 13:24:14
1332
原创 YOLO11解决方案之实例分割与跟踪探索
实例分割是一项计算机视觉任务,涉及在像素级别识别和勾勒图像中的单个对象。与只按类别对像素进行分类的语义分割不同,实例分割对每个对象实例进行唯一标记和精确划分,因此对于需要详细空间理解的应用(如医疗成像、自动驾驶和工业自动化)来说至关重要。
2025-05-19 20:42:06
1389
原创 YOLO11解决方案之锻炼监测探索
在运动评估方面,YOLO11能够实时准确地跟踪身体关键点和关节,提供即时反馈、跟踪锻炼程序并测量性能指标,从而优化训练课程。文章还提供了使用YOLO11进行锻炼监测的演示代码,并详细介绍了YOLO11姿势模型中的17个关键点及其对应的人体部位。此外,文章还讨论了AIGym参数设置,包括基本参数、物体跟踪参数和可视化参数,并通过仰卧起坐和跳绳的测试效果展示了如何调整参数。
2025-05-18 09:39:11
1365
原创 YOLO11解决方案之对象裁剪探索
对象裁剪是指从图像或视频中分离并提取特定的检测对象,YOLO11 模型功能可用于准确识别和划分物体,从而实现精确裁剪,以便进一步分析或处理。使用YOLO11 可以方便的对目标对象进行裁剪,可对场景中的单个项目进行深入检查或处理,同时可以显著降低数据量,方便传输和存储。
2025-05-16 20:32:42
364
原创 YOLO11解决方案之距离计算探索
测量两个物体之间的间距被称为特定空间内的距离计算,YOLO11使用两个边界框的中心点计算距离。使用距离计算,可以提供计算机视觉任务中比较精确的空间定位,分析视频环境中的对象关系,通过监控移动物体之间的距离,使系统能够检测到潜在的碰撞,为自动驾驶或者交通监控等应用提供更好的空间场景理解能力。
2025-05-15 21:58:07
1053
原创 YOLO11解决方案之队列管理探索
队列管理涉及组织和控制排队的人员或车辆,以减少等待时间并提高效率。在市内交通、港口、零售、机场及其他服务业等各种环境中,它涉及优化队列,以提高客户满意度和系统性能。YOLO11队列管理可提供队列长度和等待时间的即时数据,使管理人员能够快速做出明智决策。
2025-05-15 15:40:04
844
原创 YOLO11解决方案之热力图探索
使用YOLO11生成的热力图把复杂的数据转换成生动的彩色编码矩阵。这种可视化工具采用色谱来表示不同的数据值,暖色调表示较高的强度,冷色调表示较低的值。热力图在可视化复杂的数据模式、相关性和异常情况方面表现出色,为不同领域的数据解读提供了一种直观可视化方法。
2025-05-14 20:58:03
892
原创 YOLO11解决方案之物体模糊探索
物体模糊是指对图像或视频中的特定检测对象应用模糊处理,这可以利用YOLO11 模型的功能来识别和处理给定场景中的物体,保护隐私权或隐藏敏感信息。
2025-05-13 22:17:17
634
原创 YOLO11解决方案之物体计数探索
YOLO11 在实时应用中表现出色,凭借其先进的算法和[深度学习](https://www.ultralytics.com/glossary/deep-learning-dl)能力,可为人群分析、交通分析和移动监控等各种场景提供高效、精确的物体计数。本文使用Python实现了简单的演示界面,可以在图像中画线或者框,运行推理,输出计数结果。
2025-05-10 18:39:13
1451
原创 YOLO11预测返回结果plot方法解析
YOLO11 predict()返回Results对象,检测任务的主要数据包括原始图像、原图像尺寸、边界框、类别及其置信度、xywh(中心坐标、宽度和高度)及其归一化数据、xyxy(左上、右下坐标)及其归一化数据。其他任务的推理返回结果包含其特定的数据。
2025-05-08 20:37:35
1497
原创 使用YOLO11-OBB进行停车场检测
OBB定向物体检测在标准物体检测基础上,引入了一个额外的角度来更准确地定位图像中的物体,能够更准确的预测物体的形状、运动方向等特征。
2025-05-05 17:53:18
1235
原创 YOLO11-classify预测返回结果分析
图像分类是YOLO任务中最简单的一项,涉及将图像内容归入一组预定义类别中的某一类。图像分类器的输出是单一类别标签和置信度分数。当你只需要知道图像属于哪一类,而不需要知道该类对象的位置或确切形状时,图像分类就非常有用。
2025-05-01 13:31:03
902
原创 YOLO11-SEGMENT预测返回结果分析
实例分割模型的输出是一组勾勒出图像中每个物体的遮罩或轮廓,以及每个物体的类标签和置信度分数。当你不仅需要知道物体在图像中的位置,还需要知道它们的具体形状时,实例分割就非常有用了。
2025-04-30 08:20:39
1236
原创 YOLO11-POSE预测返回结果分析
姿态估计是一项涉及识别图像中特定点(通常称为关键点)位置的任务。关键点可以代表物体的各个部分,如关节、地标或其他显著特征。关键点的位置通常用一组二维 [x, y] 或 三维 [x, y, visible] 坐标。
2025-04-28 15:02:50
1069
原创 YOLO11-OBB预测返回结果分析
相比标准物体检测,OBB引入了一个额外的角度来更准确地定位图像中的物体,预测输出是一组精确包围图像中物体的旋转边界框。当物体以不同角度出现时,定向边界框尤其有用,例如在航空图像中,传统的轴对齐边界框可能会包含不必要的背景。YOLO-obb 预测返回的是Python list类型的 Results 对象,包含的数据项很多,结构比较复杂,本文进行详细介绍。
2025-04-27 20:24:58
1120
原创 YOLO11预测返回结果分析
YOLO 预测返回的是Python list类型的 Results 对象,包含的数据项很多,比较复杂。本文主要分析检测推理返回结果。
2025-04-25 10:40:08
1004
原创 使用YOLO11进行停车场检测模型训练
本次训练主要针对停车场停放车辆和空位进行检测。检测空位主要是学术方面的需求,在实际工程应用中,只检测出停放的车辆就可以了。本次训练的模型对规则的停车场的检测效果达到很好的水平。
2025-04-21 10:04:07
669
原创 YOLO数据集格式介绍
YOLO支持多种数据集支持计算机视觉任务,包括检测(detection)、实例分割(instant segmentation)、姿态估计(pose estimation)、物品分类( classification)、多目标跟踪( multi-object tracking)。数据集种类繁多,格式也比较多,很多人会比较迷惑,这里把Ultralytics官网相关内容整理在一起,以便读者对各种数据集有一个全面认识。
2025-04-19 09:40:25
1468
原创 YOLO11在停车场管理中的应用
目前停车场管理相关技术已经比较成熟,特别是随着深度学习技术的深入应用,在停车场出入口进行车辆特征、车牌号码识别等方面,产品日臻成熟。但是在大型的室外停车场,特别是景区停车场以及大型活动的临时停车场,各个区域停车不均衡,停车位资源得不到有效利用。通过YOLO对视频或图像进行检测,可以自动获得停车位状态,为停车指挥和调度提供了物美价廉的方案。本文提供了Ultralytics停车场管理解决方案介绍,YOLO11检测模型训练和推理的实践方法。
2025-04-17 14:26:22
745
基于VSCode的Django开发入门:创建、调试与模板化Web应用
2025-06-06
Web开发使用VSCode构建Flask应用入门教程
2025-06-04
【Python编程】Python安装与基础使用教程:涵盖安装步骤、环境配置及第三方模块安装方法
2025-05-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人