自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(30)
  • 收藏
  • 关注

原创 使用VSCode开发FastAPI指南

FastAPI是一个高性能Python Web框架,适合构建API和微服务。本教程演示如何在VS Code中使用FastAPI开发杂货清单应用,包括环境设置和代码实现。首先创建Python虚拟环境并安装fastapi、redis等依赖项。然后编写基础API路由,使用Pydantic定义数据模型,实现添加/查询商品功能。教程详细介绍了调试配置、端口设置以及通过/docs界面测试API的方法。项目展示了FastAPI的自动验证、文档生成等特性,帮助开发者快速构建RESTful服务。

2025-06-12 09:29:13 549

原创 在VSCode中使用Ultralytics扩展

VS Code 的 Ultralytics-snippets 扩展是一款提升开发效率的工具,专为 Ultralytics 应用开发设计。该扩展通过智能代码补全、预置代码片段和自动化任务,帮助开发者快速编写高质量代码。主要功能包括:1)一键插入常用代码模板(如模型初始化、结果处理);2)支持自定义变量名和快速导航;3)覆盖关键参数、示例代码等实用类别;4)兼容 YOLO、SAM 等多种模型。安装后输入前缀「ultra」即可调用,显著简化开发流程,是高效构建 Ultralytics 应用的得力助手。

2025-06-08 19:10:02 1408

原创 YOLO11解决方案之分析

Ultralytics基于YOLO11提供了多种现实世界解决方案,包括物体计数、追踪和安全监控等功能。它支持三种数据可视化类型:折线图(适合趋势分析)、条形图(适合类别对比)和饼图(适合比例展示)。该框架提供Python API,可处理视频流并实时生成分析结果,参数包括检测置信度、跟踪算法选择和可视化选项。不同分析类型(线图、面积图、条形图、饼图)均可直观展示检测数据,适用于安防监控、交通分析等多种场景。

2025-06-07 17:29:07 866

原创 使用VSCode开发Django指南

摘要: 本文介绍了使用VSCode开发Django应用的基本流程。首先创建虚拟环境并安装Django,然后通过django-admin命令初始化项目结构,运行开发服务器验证配置。接着创建Django应用,配置URL路由和视图函数,最终实现一个简单的“Hello, Django”页面。此外,还指导如何配置VSCode的调试启动文件(launch.json),方便快速运行和调试项目。通过虚拟环境隔离依赖,结合VSCode的终端、代码编辑和调试功能,为开发者提供了高效的Django开发体验。

2025-06-06 21:14:38 1441

原创 使用VSCode开发Flask指南

摘要:本文介绍了如何在VSCode中开发一个简单的Flask应用。Flask是一个轻量级Python Web框架,依赖扩展实现表单验证、数据库等功能。文章详细讲解了创建虚拟环境、安装Flask、编写"Hello Flask"示例、使用调试器、模板渲染和静态文件管理等步骤。重点包括:通过Jinja模板引擎实现页面继承,创建代码片段提高模板开发效率,以及使用VSCode的智能提示和调试功能。

2025-06-05 09:46:22 1621

原创 使用FastAPI构建车牌检测识别服务

本文介绍了基于YOLOv11和CRNN的车牌检测识别系统。系统采用YOLOv11进行高效车牌检测,通过CCPD数据集训练获得高精度模型。识别部分使用CRNN网络,在多种车牌数据集上训练,实现准确的车牌内容识别。核心代码封装在PlateRecognizer类中,包含检测识别、结果标注等功能。该系统借助深度学习技术,实现了从输入图像到车牌识别的完整流程,具有较高的实用性和准确性,适用于多种实际应用场景。

2025-06-02 20:06:07 1088

原创 使用VSCode在WSL和Docker中开发

通过WSL,开发人员可以安装 Linux 发行版,并直接在 Windows 上使用 Linux 应用程序、实用程序和 Bash 命令行工具,不用进行任何修改,也无需使用传统虚拟机或设置成双启动系统。借助 Docker Desktop for Windows 中支持的 WSL 2 后端,可以在基于 Linux 的开发环境中工作并生成基于 Linux 的容器,同时使用 Visual Studio Code 进行代码编辑和调试。

2025-05-31 15:03:20 1341

原创 YOLO11解决方案之语义图像搜索

本方案使用OpenAI CLIP、Meta FAISS 构建语义图像搜索引擎,通过将 CLIP 强大的可视化语言嵌入与 FAISS 高效的近邻搜索相结合,使用自然语言查询检索相关图像。本方案使用Flask构建演示WEB Server,建立了一个功能齐全的WEB图像搜索系统。

2025-05-27 11:13:53 840

原创 YOLO11解决方案之区域追踪探索

TrackZone 用来监控指定区域内的目标,而不是整个画面,它基于 Ultralytics YOLO11,专门在视频和实时摄像机传输的区域内集成了目标检测和跟踪功能。YOLO11 TrackZone 的先进算法和深度学习技术使其成为实时应用的完美选择,可在人群监控和安防等应用中提供精确、高效的目标跟踪。

2025-05-25 21:04:57 1237

原创 YOLO11解决方案之使用 Streamlit 应用程序进行实时推理

Streamlit 使构建和部署交互式网络应用程序变得简单,将其与Ultralytics YOLO11 结合使用,可以直接在浏览器中进行实时对象检测和分析。YOLO11 的高精度和高速度确保了实时视频流的流畅性能,能够帮助用户快速分析视频流。

2025-05-24 16:33:03 680

原创 YOLO11解决方案之速度估算探索

YOLO11速度估计结合物体检测与跟踪技术,通过计算物体在帧间的移动距离和帧频来估算速度,适用于交通分析、自动驾驶和安全分析等场景。本文展示了如何使用Python实现速度估计的演示界面,支持在图像中画线或框,并输出叠加了类别和速度的视频。文章还介绍了基于Tkinter的GUI演示程序,用户可以通过界面打开视频文件、绘制检测区域,并实时查看物体速度信息。

2025-05-23 20:29:00 1071

原创 YOLO11解决方案之VisonEye对象映射

Ultralytics的VisionEye解决方案利用YOLO模型实现物体识别与跟踪,模拟人眼视角,从固定点聚焦并绘制物体路径。其核心功能包括物体检测、跟踪和空间关系可视化,适用于安防监控、零售分析、运动分析、自动驾驶及人机交互等场景。通过结合距离计算或速度估算,VisionEye可构建更复杂的综合系统。演示代码展示了如何使用VisionEye处理视频,并实时显示物体与视觉点之间的距离。

2025-05-21 13:24:14 1332

原创 YOLO11解决方案之实例分割与跟踪探索

实例分割是一项计算机视觉任务,涉及在像素级别识别和勾勒图像中的单个对象。与只按类别对像素进行分类的语义分割不同,实例分割对每个对象实例进行唯一标记和精确划分,因此对于需要详细空间理解的应用(如医疗成像、自动驾驶和工业自动化)来说至关重要。

2025-05-19 20:42:06 1389

原创 YOLO11解决方案之锻炼监测探索

在运动评估方面,YOLO11能够实时准确地跟踪身体关键点和关节,提供即时反馈、跟踪锻炼程序并测量性能指标,从而优化训练课程。文章还提供了使用YOLO11进行锻炼监测的演示代码,并详细介绍了YOLO11姿势模型中的17个关键点及其对应的人体部位。此外,文章还讨论了AIGym参数设置,包括基本参数、物体跟踪参数和可视化参数,并通过仰卧起坐和跳绳的测试效果展示了如何调整参数。

2025-05-18 09:39:11 1365

原创 YOLO11解决方案之对象裁剪探索

对象裁剪是指从图像或视频中分离并提取特定的检测对象,YOLO11 模型功能可用于准确识别和划分物体,从而实现精确裁剪,以便进一步分析或处理。使用YOLO11 可以方便的对目标对象进行裁剪,可对场景中的单个项目进行深入检查或处理,同时可以显著降低数据量,方便传输和存储。

2025-05-16 20:32:42 364

原创 YOLO11解决方案之距离计算探索

测量两个物体之间的间距被称为特定空间内的距离计算,YOLO11使用两个边界框的中心点计算距离。使用距离计算,可以提供计算机视觉任务中比较精确的空间定位,分析视频环境中的对象关系,通过监控移动物体之间的距离,使系统能够检测到潜在的碰撞,为自动驾驶或者交通监控等应用提供更好的空间场景理解能力。

2025-05-15 21:58:07 1053

原创 YOLO11解决方案之队列管理探索

队列管理涉及组织和控制排队的人员或车辆,以减少等待时间并提高效率。在市内交通、港口、零售、机场及其他服务业等各种环境中,它涉及优化队列,以提高客户满意度和系统性能。YOLO11队列管理可提供队列长度和等待时间的即时数据,使管理人员能够快速做出明智决策。

2025-05-15 15:40:04 844

原创 YOLO11解决方案之热力图探索

使用YOLO11生成的热力图把复杂的数据转换成生动的彩色编码矩阵。这种可视化工具采用色谱来表示不同的数据值,暖色调表示较高的强度,冷色调表示较低的值。热力图在可视化复杂的数据模式、相关性和异常情况方面表现出色,为不同领域的数据解读提供了一种直观可视化方法。

2025-05-14 20:58:03 892

原创 YOLO11解决方案之物体模糊探索

物体模糊是指对图像或视频中的特定检测对象应用模糊处理,这可以利用YOLO11 模型的功能来识别和处理给定场景中的物体,保护隐私权或隐藏敏感信息。

2025-05-13 22:17:17 634

原创 YOLO11解决方案之物体计数探索

YOLO11 在实时应用中表现出色,凭借其先进的算法和[深度学习](https://www.ultralytics.com/glossary/deep-learning-dl)能力,可为人群分析、交通分析和移动监控等各种场景提供高效、精确的物体计数。本文使用Python实现了简单的演示界面,可以在图像中画线或者框,运行推理,输出计数结果。

2025-05-10 18:39:13 1451

原创 YOLO11预测返回结果plot方法解析

YOLO11 predict()返回Results对象,检测任务的主要数据包括原始图像、原图像尺寸、边界框、类别及其置信度、xywh(中心坐标、宽度和高度)及其归一化数据、xyxy(左上、右下坐标)及其归一化数据。其他任务的推理返回结果包含其特定的数据。

2025-05-08 20:37:35 1497

原创 使用YOLO11-OBB进行停车场检测

OBB定向物体检测在标准物体检测基础上,引入了一个额外的角度来更准确地定位图像中的物体,能够更准确的预测物体的形状、运动方向等特征。

2025-05-05 17:53:18 1235

原创 YOLO11-classify预测返回结果分析

图像分类是YOLO任务中最简单的一项,涉及将图像内容归入一组预定义类别中的某一类。图像分类器的输出是单一类别标签和置信度分数。当你只需要知道图像属于哪一类,而不需要知道该类对象的位置或确切形状时,图像分类就非常有用。

2025-05-01 13:31:03 902

原创 YOLO11-SEGMENT预测返回结果分析

实例分割模型的输出是一组勾勒出图像中每个物体的遮罩或轮廓,以及每个物体的类标签和置信度分数。当你不仅需要知道物体在图像中的位置,还需要知道它们的具体形状时,实例分割就非常有用了。

2025-04-30 08:20:39 1236

原创 YOLO11-POSE预测返回结果分析

姿态估计是一项涉及识别图像中特定点(通常称为关键点)位置的任务。关键点可以代表物体的各个部分,如关节、地标或其他显著特征。关键点的位置通常用一组二维 [x, y] 或 三维 [x, y, visible] 坐标。

2025-04-28 15:02:50 1069

原创 YOLO11-OBB预测返回结果分析

相比标准物体检测,OBB引入了一个额外的角度来更准确地定位图像中的物体,预测输出是一组精确包围图像中物体的旋转边界框。当物体以不同角度出现时,定向边界框尤其有用,例如在航空图像中,传统的轴对齐边界框可能会包含不必要的背景。YOLO-obb 预测返回的是Python list类型的 Results 对象,包含的数据项很多,结构比较复杂,本文进行详细介绍。

2025-04-27 20:24:58 1120

原创 YOLO11预测返回结果分析

YOLO 预测返回的是Python list类型的 Results 对象,包含的数据项很多,比较复杂。本文主要分析检测推理返回结果。

2025-04-25 10:40:08 1004

原创 使用YOLO11进行停车场检测模型训练

本次训练主要针对停车场停放车辆和空位进行检测。检测空位主要是学术方面的需求,在实际工程应用中,只检测出停放的车辆就可以了。本次训练的模型对规则的停车场的检测效果达到很好的水平。

2025-04-21 10:04:07 669

原创 YOLO数据集格式介绍

YOLO支持多种数据集支持计算机视觉任务,包括检测(detection)、实例分割(instant segmentation)、姿态估计(pose estimation)、物品分类( classification)、多目标跟踪( multi-object tracking)。数据集种类繁多,格式也比较多,很多人会比较迷惑,这里把Ultralytics官网相关内容整理在一起,以便读者对各种数据集有一个全面认识。

2025-04-19 09:40:25 1468

原创 YOLO11在停车场管理中的应用

目前停车场管理相关技术已经比较成熟,特别是随着深度学习技术的深入应用,在停车场出入口进行车辆特征、车牌号码识别等方面,产品日臻成熟。但是在大型的室外停车场,特别是景区停车场以及大型活动的临时停车场,各个区域停车不均衡,停车位资源得不到有效利用。通过YOLO对视频或图像进行检测,可以自动获得停车位状态,为停车指挥和调度提供了物美价廉的方案。本文提供了Ultralytics停车场管理解决方案介绍,YOLO11检测模型训练和推理的实践方法。

2025-04-17 14:26:22 745

基于VSCode的Django开发入门:创建、调试与模板化Web应用

内容概要:本文档《使用VSCode开发Django入门教程.pdf》详细介绍如何使用VSCode创建和运行一个简单的Django应用程序。主要内容涵盖创建虚拟环境、安装Django、创建和运行Django项目、创建Django应用、配置调试器、使用模板、提供静态文件、创建多个模板、处理数据模型和迁移等步骤。教程通过具体操作指导开发者熟悉VSCode的功能,如终端、编辑器、调试器和代码片段等,并逐步构建一个包含多个页面的Web应用,最终实现数据库操作和数据展示。 适合人群:具有一定Python基础,特别是对Web开发感兴趣的初学者和中级开发者,以及希望通过VSCode提升Django开发效率的开发者。 使用场景及目标:①掌握在VSCode中搭建Django开发环境,包括创建虚拟环境和安装依赖;②学会创建和配置Django项目及应用;③熟悉调试器的使用,包括创建调试配置文件和设置断点;④理解Django模板系统的使用,包括创建和扩展模板;⑤掌握静态文件的管理和使用;⑥学习Django的数据模型定义和数据库迁移操作。 阅读建议:本教程以实践为主,建议读者跟随教程一步步操作,确保每个步骤都能成功运行。特别注意虚拟环境的创建和激活,以及调试器的配置和使用。在学习过程中,可以通过修改代码和模板来加深理解,并尝试解决遇到的问题。

2025-06-06

Web开发使用VSCode构建Flask应用入门教程

内容概要:本文档是一份详细的《使用VSCode开发Flask入门教程》,全面介绍如何使用VSCode创建和运行Flask应用。首先介绍了Flask作为轻量级Python框架的特点及其依赖扩展。接着详细描述了如何在VSCode中创建项目开发环境,包括创建虚拟环境、安装Flask、编写基础代码、启动开发服务器等步骤。随后讲解了如何在VSCode中调试Flask应用,包括设置断点、使用调试工具栏、观察变量值等。接下来介绍了如何使用Jinja2模板引擎渲染页面,避免直接在代码中生成HTML带来的安全风险。最后讲述了如何提供静态文件(如CSS样式表和JSON数据)以及创建多个继承自基本模板的页面,提高代码复用性和维护性。 适合人群:有一定Python编程基础,初次接触Flask框架并对VSCode开发环境感兴趣的开发者。 使用场景及目标:①熟悉Flask框架的基础概念和工作流程;②掌握在VSCode中创建、运行和调试Flask应用的方法;③学会使用模板引擎和静态文件优化Web应用的用户体验;④理解如何通过模板继承构建多页面Web应用。 阅读建议:建议读者按照文档顺序逐步实践,特别是在创建虚拟环境、编写代码和调试阶段,务必亲手操作以加深理解。对于模板和静态文件部分,可以尝试修改现有代码或添加新功能来巩固所学知识。

2025-06-04

停车场停车和空位检测训练小型数据集

停车场停车和空位检测训练小型数据集,已经划分训练、验证和测试集,YOLO txt格式标注。

2025-05-29

【Python编程】Python安装与基础使用教程:涵盖安装步骤、环境配置及第三方模块安装方法

内容概要:本文档详细介绍了Python的安装、初步使用、第三方模块安装以及虚拟环境管理。安装部分涵盖了从Python官网下载安装包、Windows系统下的默认与自定义安装流程,以及安装后的环境变量验证。初步使用部分展示了Python的两种运行模式(命令行模式和交互模式),并以“Hello World”为例进行了演示。此外,还介绍了简单的数学运算操作。第三方模块安装部分讲解了如何使用pip工具安装如opencv这样的第三方库。最后,文档阐述了虚拟环境的概念及其重要性,并分别介绍了基于`venv`和`conda`的虚拟环境创建、激活、退出及删除方法。 适合人群:对Python编程有兴趣的初学者,尤其是那些刚开始接触Python安装和环境配置的新手。 使用场景及目标:①帮助用户掌握Python在Windows系统上的安装步骤;②使用户能够编写简单的Python程序并执行基本的数学运算;③指导用户安装所需的第三方模块;④让用户学会创建和管理Python虚拟环境,确保不同项目之间的依赖隔离。 阅读建议:对于初次接触Python的读者来说,建议按顺序阅读,先熟悉安装过程,再逐步尝试编写和运行简单的Python代码。在学习过程中,实际动手操作非常重要,尤其是在安装第三方模块和配置虚拟环境时,应多加练习,确保掌握每一个步骤。

2025-05-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除