Day53:动态规划 LeedCode 1143.最长公共子序列 1035.不相交的线 53. 最大子序和 动态规划

文章介绍了如何使用动态规划方法解决最长公共子序列问题,通过对比两个字符串的字符,找到最长公共子序列的长度。同时提及了如何将最大子数组和问题转化为类似的动态规划问题,通过前后元素间的加法和取最大值来求解。
摘要由CSDN通过智能技术生成

1143. 最长公共子序列

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。

提示:

  • 1 <= text1.length, text2.length <= 1000
  • text1 和 text2 仅由小写英文字符组成。

思路 :

动态规划五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:下标为[0, i - 1]的字符串text1与下标 为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

为什么不直接用dp[i][j]表示下标为[0,i]的字符串呢?

直接用dp[i][j]表示下标为[0,i]的字符串,就比较难处理dp[i][0]的情况

dp[i][0],dp[0][j]不能套用递推公式 ,如图

如果dp[0][j]==text2[j],j及j以后的位置都是1

如果dp[i][0]==text1[i],i及i以后的位置都是1

 

2.确定递推公式

text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

这里为什么是dp[i][j] = dp[i - 1][j - 1] + 1;而不是

dp[i][j] = max(dp[i - 1][j - 1] + 1,dp[i - 1][j], dp[i][j - 1])?

因为dp[i - 1][j - 1] + 1一定>=dp[i - 1][j] 并且dp[i - 1][j - 1] + 1一定>=dp[i][j - 1]可以看图理解

text1[i - 1] 与 text2[j - 1]不相同,dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

3.dp数组初始化

dp[i][0]=0

dp[0][j]=0

4.确定遍历顺序

从递推公式,可以看出,有三个方向可以推出dp[i][j],所以要从前向后,从上到下来遍历这个矩阵。

5举例推导dp数组

代码参考:

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
     int [] [] dp=new int[text1.length()+1][text2.length()+1];
     for(int i=1;i<dp.length;i++){
        for(int j=1;j<dp[0].length;j++){
            if(text1.charAt(i-1)==text2.charAt(j-1)){
                dp[i][j]=dp[i-1][j-1]+1;
            }else{
                dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
            }
        }
     }
     return dp[text1.length()][text2.length()];
    }
}

 

 


1035. 不相交的线

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足:

  •  nums1[i] == nums2[j]
  • 且绘制的直线不与任何其他连线(非水平线)相交。

请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

示例 1:

输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
解释:可以画出两条不交叉的线,如上图所示。 
但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。

示例 2:

输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2]
输出:3

示例 3:

输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1]
输出:2

思路:

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

代码参考:


  class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int len1 = nums1.length;
        int len2 = nums2.length;
        int[][] dp = new int[len1 + 1][len2 + 1];

        for (int i = 1; i <= len1; i++) {
            for (int j = 1; j <= len2; j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }

        return dp[len1][len2];
    }
}

53. 最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组

是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

思路:

动态规划五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

2.确定递推公式

dp[i]只有两个方向可以推出来:

  • dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
  • nums[i],即:从头开始计算当前连续子序列和

3.dp数组如何初始化

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础

子数组最少包含一个元素

nums[0]即dp[0] = nums[0]。

4.确定遍历顺序

递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。

5.举例推导dp数组

代码参考:

class Solution {
    public int maxSubArray(int[] nums) {
      int[] dp=new int[nums.length];
      dp[0]=nums[0];
      int result=nums[0];
      for(int i=1;i<nums.length;i++){
        dp[i]=Math.max(dp[i-1]+nums[i],nums[i]);
        result=Math.max(result,dp[i]);
      }
         return result;
    }
}

注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]。

在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值