《菜菜的机器学习sklearn课堂》数据预处理和特征工程

本文详细解读了Java面试中可能遇到的数据预处理问题,包括数据标准化(如StandardScaler和MinMaxScaler)、处理大量特征的策略、缺失值处理(如SimpleImputer和LabelEncoder),以及特征编码(如OrdinalEncoder和OneHotEncoder)。
摘要由CSDN通过智能技术生成

《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》点击传送门,即可获取!

当X中的特征数量非常多的时候,fit会报错并表示:数据量太大了我计算不了

此时使用partial_fit作为训练接口

scaler = scaler.partial_fit(data)

使用numpy来实现归一化

import numpy as np

X = np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])

#归一化

X_nor = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))

X_nor

#逆转归一化

X_returned = X_nor * (X.max(axis=0) - X.min(axis=0)) + X.min(axis=0)

X_returned

数据标准化 preprocessing.StandardScaler

数据标准化(Standardization,又称Z-score normalization):当数据(x)按均值(μ)中心化后,再按标准差(σ)缩放,数据就会服从为均值为0,方差为1的正态分布(即标准正态分布),公式如下:

x ∗ = x − μ σ x^* = \frac {x - \mu} {\sigma} x∗=σx−μ​

from sklearn.preprocessing import StandardScaler

data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

scaler = StandardScaler() #实例化

scaler.fit(data) #fit,本质是生成均值和方差

scaler.mean_ #查看均值的属性mean_

array([-0.125, 9. ])

scaler.var_ #查看方差的属性var_

array([ 0.546875, 35. ])

x_std = scaler.transform(data) #通过接口导出结果

x_std.mean() #导出的结果是一个数组,用mean()查看均值

0.0

x_std.std() #用std()查看方差

#1.0

scaler.fit_transform(data) #使用fit_transform(data)一步达成结果

“”"

array([[-1.18321596, -1.18321596],

[-0.50709255, -0.50709255],

[ 0.16903085, 0.16903085],

[ 1.52127766, 1.52127766]])

“”"

scaler.inverse_transform(x_std) #使用inverse_transform逆转标准化

“”"

array([[-1. , 2. ],

[-0.5, 6. ],

[ 0. , 10. ],

[ 1. , 18. ]])

“”"

对于StandardScaler和MinMaxScaler来说,空值NaN会被当做是缺失值

  • 在fit的时候忽略

  • 在transform的时候保持缺失NaN的状态显示

尽管去量纲化过程不是具体的算法,但在fit接口中,依然只允许导入至少二维数组,一维数组导入会报错。通常来说,我们输入的X会是我们的特征矩阵,现实案例中特征矩阵不太可能是一维所以不会存在这个问题。

StandardScaler 和 MinMaxScaler 如何选择?

看情况

  • 大多数机器学习算法中,会选择StandardScaler进行特征缩放,因为MinMaxScaler对异常值非常敏感

  • 在PCA,聚类,逻辑回归,支持向量机,神经网络这些算法中,StandardScaler往往是最好的选择

MinMaxScaler在不涉及距离度量、梯度、协方差计算以及数据需要被压缩到特定区间时使用广泛,比如数字图像处理中量化像素强度时,都会使用MinMaxScaler将数据压缩于[0,1]区间之中。

建议先试试看Sta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值