《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》,点击传送门,即可获取!
当X中的特征数量非常多的时候,fit会报错并表示:数据量太大了我计算不了
此时使用partial_fit作为训练接口
scaler = scaler.partial_fit(data)
使用numpy来实现归一化
import numpy as np
X = np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])
#归一化
X_nor = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_nor
#逆转归一化
X_returned = X_nor * (X.max(axis=0) - X.min(axis=0)) + X.min(axis=0)
X_returned
数据标准化 preprocessing.StandardScaler
数据标准化(Standardization,又称Z-score normalization):当数据(x)按均值(μ)中心化后,再按标准差(σ)缩放,数据就会服从为均值为0,方差为1的正态分布(即标准正态分布),公式如下:
x ∗ = x − μ σ x^* = \frac {x - \mu} {\sigma} x∗=σx−μ
from sklearn.preprocessing import StandardScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler = StandardScaler() #实例化
scaler.fit(data) #fit,本质是生成均值和方差
scaler.mean_ #查看均值的属性mean_
array([-0.125, 9. ])
scaler.var_ #查看方差的属性var_
array([ 0.546875, 35. ])
x_std = scaler.transform(data) #通过接口导出结果
x_std.mean() #导出的结果是一个数组,用mean()查看均值
0.0
x_std.std() #用std()查看方差
#1.0
scaler.fit_transform(data) #使用fit_transform(data)一步达成结果
“”"
array([[-1.18321596, -1.18321596],
[-0.50709255, -0.50709255],
[ 0.16903085, 0.16903085],
[ 1.52127766, 1.52127766]])
“”"
scaler.inverse_transform(x_std) #使用inverse_transform逆转标准化
“”"
array([[-1. , 2. ],
[-0.5, 6. ],
[ 0. , 10. ],
[ 1. , 18. ]])
“”"
对于StandardScaler和MinMaxScaler来说,空值NaN会被当做是缺失值,
-
在fit的时候忽略
-
在transform的时候保持缺失NaN的状态显示
尽管去量纲化过程不是具体的算法,但在fit接口中,依然只允许导入至少二维数组,一维数组导入会报错。通常来说,我们输入的X会是我们的特征矩阵,现实案例中特征矩阵不太可能是一维所以不会存在这个问题。
StandardScaler 和 MinMaxScaler 如何选择?
看情况
-
大多数机器学习算法中,会选择StandardScaler进行特征缩放,因为MinMaxScaler对异常值非常敏感
-
在PCA,聚类,逻辑回归,支持向量机,神经网络这些算法中,StandardScaler往往是最好的选择
MinMaxScaler在不涉及距离度量、梯度、协方差计算以及数据需要被压缩到特定区间时使用广泛,比如数字图像处理中量化像素强度时,都会使用MinMaxScaler将数据压缩于[0,1]区间之中。
建议先试试看Sta