【论文导读】- Federated Graph Neural Networks Overview, Techniques and Challenges(联邦图神经网络:概述、技术和挑战

2. Terminology and Taxonomy(术语与分类法)

将联邦图神经网络按照如下三层结构进行分类:
在这里插入图片描述
在第一类中,数据所有者通过图形拓扑相关联。 在这一类别中又可以分为以下两小类:

  1. 有中央服务器
  2. 没有中央服务器

中央服务器具有客户端间图形拓扑的全局视图。它可以利用这一观点在服务器中训练一个GNN模型来改进FL聚合和帮助客户更新他们的本地图。

**在第二类中,数据所有者与图拓扑不相关。**在这一类别中又可以分为以下三小类:

  1. 没有重叠节点的客户端
  2. 部分重叠节点的客户端
  3. 完全重叠节点的客户端

3. Data Owners Related by a Graph(第一大类)

3.1 FedGNNs with a Central Server

有中央服务器的联邦图神经网络。
在这里插入图片描述
客户端的本地数据不一定需要是图形数据。中心服务器根据图中的关系来协调客户端。服务器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值