A/B Test(AB测试) 流程、常见面试问题及解答_a/b测试_画扇落汗的博客-CSDN博客A/B Test(AB测试) 流程、常见面试问题及解答包括:(1) ab test 中的假设检验原理是什么跟ab test 结合的(2) 如何选择实验的样本量(3) 指标的提升怎么判断显著性(4) 实验做多长时间, 为什么(5) aa 检验怎么做, 怎么判断aa 做的科学(6) ab test 主要的应用场景(7)ab test流程_a/b测试https://blog.csdn.net/garbageSystem/article/details/122603832?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_utm_term~default-0-122603832-blog-97492730.235^v38^pc_relevant_sort_base1&spm=1001.2101.3001.4242.1&utm_relevant_index=3
A/B测试学习笔记_分组序贯检验_DontCareOthers的博客-CSDN博客一、A/B测试的定义 A/B测试指的是:为了验证一个新的产品交互设计、产品功能或者策略、算法的效果,在同一个时间段,给多组用户(一般称为对照组和试验组,用户分组方法统计上随机,使得多组用户在统计角度上无差别)分别展示优化前(对照组)和优化后(试验组、可以有多组)的产品交互设计、产品功能或者策略、算法,并通过数据分析,判断优化前后的产品交互设计、产品功能或则策略、算法在一个或者多个评估指标上是否符合预期的一种试验方法。二、A/B测试的试验类型1. 正交实验 指的是:..._分组序贯检验https://blog.csdn.net/qq_38777880/article/details/114667587?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2~default~BlogCommendFromBaidu~Rate-1-114667587-blog-97492730.235%5Ev38%5Epc_relevant_sort_base1&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2~default~BlogCommendFromBaidu~Rate-1-114667587-blog-97492730.235%5Ev38%5Epc_relevant_sort_base1&utm_relevant_index=1浅谈A/B测试 ,看这一篇就足够了_分析a/b测试_佞臣888的博客-CSDN博客随着流量红利的逐渐消失,越来越多的公司开始重视数据驱动、试验驱动的精细化运营思想,并积极进行实践。有些公司在考虑采购第三方试验平台,有些公司考虑自建试验平台。我们和这样的公司都有深入的接触,发现很多公司对试验平台应该是什么样的,有什么样的坑,以及怎么避免才坑没有完整清晰的认识。为此,我们发起这个 Chat 活动。在这次活动中,将会用最简单易懂的语言说清楚,关于 A/B 测试 “ 从入门到放弃 ..._分析a/b测试https://blog.csdn.net/qq_38925100/article/details/97492730?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522169450254316800188588901%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=169450254316800188588901&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-97492730-null-null.142%5Ev93%5EchatsearchT3_1&utm_term=A%2FB%E6%B5%8B%E8%AF%95&spm=1018.2226.3001.4187
辛普森悖论
规避辛普森悖论造成的各种大坑:
最重要的一点是,要得到科学可信的 AB 测试试验结果,就必须合理的进行正确的流量分割,保证试验组和对照组里的用户特征是一致的,并且都具有代表性,可以代表总体用户特征。
第一类错误:H0成立拒绝H0(弃真错误)
第二类错误:H0不成立接受H0(取伪错误)
异动分析
- 核验数据的正确性(异动是否室友产品bug,数据bug,数据统计口径造成的)
- 归因分析:
- 外因分析——市场大环境变化,竞争对手突然变化,时间性周期变化(难以分析)
- 内因分析(着重分析)——产品迭代,技术bug,运营活动
- 业务拆解:业务累加法,GMV=订单量*客单价=活跃用户数*转化率*客单价
- 找到解决办法
1. 验证数据真实性(数据上报错误,产品bug,数据bug,数据统计口径变化)
2.归因分析
外因分析:市场变化(竞争对手),周期性数据波动(周末/春节)
内因分析:产品迭代,运营活动,技术bug
3.业务拆解:
业务累加法:GMV=业务1+业务2+业务3
纵向找原始指标:GMV=订单数*客单价=活跃用户数*转化率*客单价
(观察每个业务指标背后的数据因子)
4.找到问题的解决办法