异动归因方案在实际业务应用中的难点及解决方案

目录

1 指标归因与维度归因

1.1 指标归因

1.2 维度归因

2 定位异常维度用js相对熵还是用gini系数

2.1 js相对熵

2.2 gini系数

2.3 两种方法优缺点总结

2.3.1 两者的优缺点和适用性

2.3.2 两者在加法指标中的归因结论对比

3 如何实现多维交叉归因


        自动化异动归因方案在实际业务应用时,面临着几个难点,首先是加法和除法指标分别用什么方法去定位根因维度更合理;第二单一维度归因结论不满足业务需要时,多维归因如何避免维度爆炸问题;第三维度归因和指标归因到底是什么,怎么理解等。回答好这几个问题,才能更好的将方案推广落地。

1 指标归因与维度归因

1.1 指标归因

        在上篇文章 归因分析中各种指标因子贡献度计算方法总结_归因分析贡献度计算-CSDN博客 中,详细介绍了加法型、乘法型和除法型这三种指标因子贡献度的计算方法,乘法型指标计算每个乘数项贡献度的方法是做log变化转化为加法,除法型指标计算指标波动贡献度、分母波动贡献度的方法是综合贡献法等,这其实都是指标归因,也就是从指标的公式构成上进行贡献度计算。   

        如GMV作为乘法指标时,我们使用公式GMV = 用户数 * 人均单量 * 均价,对公式两边同时做log变化,就能得到各个因子对GMV波动的贡献度,可以从整体上回答到底是哪个大的因素出了问题。

1.2 维度归因

      将指标从A维度、B维度、C维度进行拆分对比,看哪个维度的异常,这个是维度归因。如GMV作为加法指标时,可以从地区、产品类别、销售渠道等多个维度来拆解这个指标,得到是哪些维度的异常影响了整体。

        这两者是回答的是异常波动的两个层面的问题,一个是看哪个指标的异常大,一个是哪个维度出了问题。进一步理解可参考 洞察报告-指标归因--智能数据洞察-火山引擎 【用户指南-洞察决策-核心功能-洞察报告维度归因/指标归因】。

2 定位异常维度用js相对熵还是用gini系数

2.1 js相对熵

        js相对熵度量了两个概率分布的差异程度,是KL相对熵的变体,JS相对熵是对称的&

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值