目录
自动化异动归因方案在实际业务应用时,面临着几个难点,首先是加法和除法指标分别用什么方法去定位根因维度更合理;第二单一维度归因结论不满足业务需要时,多维归因如何避免维度爆炸问题;第三维度归因和指标归因到底是什么,怎么理解等。回答好这几个问题,才能更好的将方案推广落地。
1 指标归因与维度归因
1.1 指标归因
在上篇文章 归因分析中各种指标因子贡献度计算方法总结_归因分析贡献度计算-CSDN博客 中,详细介绍了加法型、乘法型和除法型这三种指标因子贡献度的计算方法,乘法型指标计算每个乘数项贡献度的方法是做log变化转化为加法,除法型指标计算指标波动贡献度、分母波动贡献度的方法是综合贡献法等,这其实都是指标归因,也就是从指标的公式构成上进行贡献度计算。
如GMV作为乘法指标时,我们使用公式GMV = 用户数 * 人均单量 * 均价,对公式两边同时做log变化,就能得到各个因子对GMV波动的贡献度,可以从整体上回答到底是哪个大的因素出了问题。
1.2 维度归因
将指标从A维度、B维度、C维度进行拆分对比,看哪个维度的异常,这个是维度归因。如GMV作为加法指标时,可以从地区、产品类别、销售渠道等多个维度来拆解这个指标,得到是哪些维度的异常影响了整体。
这两者是回答的是异常波动的两个层面的问题,一个是看哪个指标的异常大,一个是哪个维度出了问题。进一步理解可参考 洞察报告-指标归因--智能数据洞察-火山引擎 【用户指南-洞察决策-核心功能-洞察报告维度归因/指标归因】。
2 定位异常维度用js相对熵还是用gini系数
2.1 js相对熵
js相对熵度量了两个概率分布的差异程度,是KL相对熵的变体,JS相对熵是对称的&