FPGA小白笔记——FPGA简介(学渣版)

目录

前言

1、FPGA是什么?

2、FPGA开发环境

2.1   语言环境

2.2 FPGA 开发思路

总结


前言

在专用集成电路( ASIC)领域中,FPGA作为一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。同时FPGA可用于实现硬件灵活定制,能够高效地实现算法加速、数据处理,从而提高系统的性能。


1、FPGA是什么?

FPGA(全称: Field Programmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。FPGA是一种完成通用功能的可编程逻辑芯片,即可以对其进行编程实现某种逻辑处理功能。FPGA更偏向于硬件电路,是用来设计芯片的芯片(FPGA),通过硬件编程语言在FPGA芯片上自定义集成电路的过程;单片机偏向于软件,是在已有的固化电路的芯片(单片机)上设计开发,通过软件编程语言描述软件指令在硬件芯片上的执行。

2、FPGA开发环境

2.1   语言环境

硬件描述语言主要包括:Verilog、VHDL、System Verilog。

Verilog HDL:拥有广泛的设计群体,成熟的资源也比VHDL丰富,从C编程语言中继承了多种操作符和结构,易于学习和理解。

VHDL:超高速集成电路硬件描述语言是一种标准化程度较高的硬件描述语言,其具有语法严谨、结构规范、移植性强、数据类型丰富等特点。除此之外VHDL支持层次结构设计,独立于器件和设计平台,程序复用性强。

SystemVerilog:结合了来自Verilog、VHDL、C++的概念,将硬件描述语言与现代的高层级验证语言结合了起来。所以System Verilog有上述两种语言和计算机高级语言的特征。

因此,本文采用的就是Verilog 语言对FPGA进行编程。

Verilog既是一种行为描述语言也是一种结构描述语言。这意味着,无论是描述电路功能行为的模块,还是描述元器件或较大部件互联的模块,都可以用Verilog语言来建模。

Verilog语言本身就是从C语言继承并发展而来的,但是它主要用于描述硬件,和C语言这种软件语言思想完全不同。C语言所描述的代码功能在执行时都是逐行(顺序)执行的,而Verilog语言在设计完成后执行时则是并行执行的, C语言所描述的代码功能并不会真实的映射成最后的硬件,只是对内存的操作和进行数据的搬移,而用Verlog语言所描述的代码功能则会真正的生成所对应的硬件电路。

图1  半加器逻辑图 

 

2.2 FPGA 开发思路

Verilog HDL的设计多采用自上而下的设计方法( top-down) 。即先定义顶层模块功能,进而分析构成顶层模块的必要子模块;然后进一步对各个子模块进行分解和设计,直到到达底层功能块。这样,可以把一个较大的系统,细化成多个小系统,从时间、工作量上分配给更多的人员去设计,从缩短开发周期,节约成本。

例如:我们要设计一个项目,首先根据它所实现的功能及运用到的工具进行模块的划分,以数码管动态显示为例子,我们需要用到的硬件就有 数码管、和定时器,所以我们将其划分为sel_led_dynamic、time_count两个模块,最后用一个top_sel_led_dynamic模块将两个模块进行连接。

sel_led_dynamic模块sel_led_dynamic用于实现LED数码管的动态显示

module sel_led_dynamic(
	input 				clk  ,//时钟,50MHz
	input 				rst_n,//复位信号,下降沿有效
	input 				flag ,//周期信号
    input               sec,
	
	output reg [5:0]	sel  ,//位选信号,六个数码管
	output reg [7:0]	seg  //段选信号,八段led

);

reg [2:0]	cstat ;//当前状态
reg [2:0]	nstat ;//下一个状态
reg [3:0] value;

reg [16:0] sec_all;
wire [1:0] hour_h;
wire [3:0] hour_l;
wire [2:0] min_h;
wire [3:0] min_l;
wire [2:0] sec_h;
wire [3:0] sec_l;

always@(posedge clk or negedge rst_n)begin
	if(!rst_n)begin//下降沿有效
		sec_all <= 17'd0;
	end 
	else if(sec_all == 17'd86399) begin
		sec_all <= 17'd0;
	end 
    else if(sec) begin
		sec_all <= sec_all + 1'd1;
	end 
    else 
    sec_all <= sec_all;
end 


//状态跳转
always@(posedge clk or negedge rst_n)begin
	if(!rst_n)begin//下降沿有效
		cstat <= 3'd0;//当前状态置0
	end 
	else begin
		cstat <= nstat;//状态跳转
	end 
end 

time_count模块用于计时

module time_count(
	input clk  ,//50MHz时钟信号
	input rst_n,//复位信号

	output	reg  flag//一个时钟周期的脉冲信号
);
parameter MAX_NUM = 26'd25_000_000;//计数器最大计数值
reg  [25:0]	 cnt; //时钟分频计数器

//计数器对时钟计数,每0.5s,输出一个时钟周期脉冲信号
always @(posedge clk or negedge rst_n)begin
	if(!rst_n)begin//按复位时
		flag <= 1'b0;//信号为0
		cnt <= 26'd0;//计数器清零
	end
	else if(cnt == MAX_NUM - 1'b1)begin//如果没到时间
		flag <= 1'b1;//信号为1
		cnt <= 26'd0;//计数器清零
	end
	else	begin //否则到时间
		flag <= 1'b0;//信号变为0
		cnt <= cnt + 1'b1;//计数器持续累加1
	end
end
endmodule 

 top_sel_led_dynamic模块将两个模块的数据进行整合

module top_sel_led_dynamic(
 input    clk  ,//时钟信号,50MHz
 input    rst_n,//复位信号,下降沿有效
 
 output [5:0] sel  ,//位选信号
 output [7:0] seg   //段选信号
);

wire flag;//wire连接两个模块
wire sec;
parameter MAX_NUM = 25'd10_000;
parameter TIME = 26'd50_000_000;

time_count #(.MAX_NUM(MAX_NUM)) u_time_count(//实例化计时器模块
.clk  (clk)  ,//时钟频率,50MHz
.rst_n  (rst_n),//复位信号,下降沿有效

.flag  (flag)  //一个时钟周期的脉冲信号  

);

time_count #(.MAX_NUM(TIME)) u1_time_count(//实例化计时器模块
.clk  (clk)  ,//时钟频率,50MHz
.rst_n  (rst_n),//复位信号,下降沿有效

.flag  (sec)  //一个时钟周期的脉冲信号  

);

sel_led_dynamic u_sel_led_dynamic(
    .clk (clk),
    .rst_n(rst_n),
    .flag (flag),
    .sec(sec),

    .sel(sel),
    .seg(seg)
);
 
endmodule


总结

学习FPGA不易,小白加油吧!

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值