Sobel原理及计算过程详解

索贝尔算子(Sobel operator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度近似值。Soble卷积因子为:

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像灰度值,计算公式如下:

图像的每一个像素的横向及纵向灰度值通过以下公式结合,来计算该点灰度的大小:

G =√Gx² +  Gy²

通常,为了提高效率使用不开平方的近似值:

|G| = |Gx| + |Gy|

具体计算如下:

首先,我们需要构建一个Sobel算子,通常是一个 3x3 的矩阵。Sobel算子可以分别计算水平和垂直方向的梯度值,然后将两者合并得到总梯度值。下面是要计算的四点乘四点的图像矩阵:

对于边缘上的点,由于没有足够的邻居像素,我们无法使用Sobel算子来计算梯度值。所以,我们假设选择图像矩阵中的点A(1, 1),即第二行第二列的元素,对应的灰度值为5。接下来,我们将使用Sobel算子计算这个点的梯度值。

A(1,1)

0

1

2

3

4

5

6

7

8

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值