数据结构(最小生成树)

目录

一、生成树

7.1.4 最小生成树

1.概念

2.prim算法

3.kruskal算法

 二、总结


一、生成树

7.1.4 最小生成树

1.概念

(1)树的代价:设G=(V,E)是一个无向连通图,则生成树上各边的权值之和即为树的代价。

(2)MTS性质:若G=(V,E)是一个无向连通图,U是顶点集V的一个非空子集,若(u,v)是一条具有最小权值的边,且u\in U,v\in V-U必定存在一棵含边(u,v)的最小生成树。

图示:

 注:含有n个顶点的连通图的生成树必然含有n-1条边。构成最小生成树的边一定是原连通图中权值最小的边。求解最小生成树的算法分别prim算法和kruskal算法。

2.prim算法

(1)思想及过程

连通图V中任取一个顶点,加入到生成树T的顶点集U中,同时初始化V-U图的各顶点的候选交叉边。循环以上操作,直到得到一棵代价最小的生成树。

(2)举例图示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值