周志华《机器学习》总结——day1
一、绪论
1.1 机器学习的定义
人的“经验”对应计算机中的“数据”,让计算机来学习这些经验数据,生成一个算法模型,在面对新的情况中,计算机便能作出有效的判断,这便是机器学习。
另一本经典教材的作者Mitchell给出了一个形式化的定义,假设:
- P:计算机程序在某任务类T上的性能。
- T:计算机程序希望实现的任务类。
- E:表示经验,即历史的数据集。
若该计算机程序通过利用经验E在任务T上获得了性能P的改善,则称该程序对E进行了学习。
1.2 机器学习的基本术语
假设我们收集了一批西瓜的数据,例如:(色泽=青绿;根蒂=蜷缩;敲声=浊响), (色泽=乌黑;根蒂=稍蜷;敲声=沉闷), (色泽=浅自;根蒂=硬挺;敲声=清脆)……每对括号内是一个西瓜的记录,定义:
- 数据集:所有记录的集合
- 实例(instance)或样本(sample):每一条记录
- 特征(feature)或属性(attribute):单个样本的特点,例如:色泽或敲声
- 维数(dimensionality):样本的特征数,该西瓜的例子维数为3,维数非常大时,会造成“维数灾难”。
- 属性空间(attribute space)或样本空间或输入空间:属性张成的空间
- 特征向量(feature vector):在属性空间中,每个西瓜都可以用坐标轴中的一个点表示,一个点也是一个向量,例如(青绿,蜷缩,浊响),一个样本也称为一个特征向量
计算机程序学习经验数据生成算法模型的过程中,每一条记录称为一个“训练样本”,同时在训练好模型后,我们希望使用新的样本来测试模型的效果,则每一个新的样本称为一个“测试样本”。定义:
- 训练集(trainning set):所有训练样本的集合。[特殊]。
- 测试集(test set):所有测试样本的集合为。[一般]。
- 泛化能力(generalization):机器学习出来的模型适用于新样本的能力为,即从特殊到一般。
- 假设空间:所有假设组成的空间,通配符*(表示这个属性可取任意值),假设空间规模大小计算:(属性1取值个数+1)*(属性2取值个数+1)*…+1
- 版本空间:与训练集一致的假设集合,利用训练集训练后的假设空间
西瓜的例子中,我们是想计算机通过学习西瓜的特征数据,训练出一个决策模型,来判断一个新的西瓜是否是好瓜。可以得知我们预测的是:西瓜是好是坏,即好瓜与差瓜两种,是离散值。同样地,也有通过历年的人口数据,来预测未来的人口数量,人口数量则是连续值。定义:
- 分类(classification):预测值为离散值的问题。
- 回归(regression):预测值为连续值的问题。
我们预测西瓜是否是好瓜的过程中,很明显对于训练集中的西瓜,我们事先已经知道了该瓜是否是好瓜,学习器通过学习这些好瓜或差瓜的特征,从而总结出规律,即训练集中的西瓜我们都做了标记,称为标记信息。但也有没有标记信息的情形,例如:我们想将一堆西瓜根据特征分成两个小堆,使得某一堆的西瓜尽可能相似,即都是好瓜或差瓜,对于这种问题,我们事先并不知道西瓜的好坏,样本没有标记信息。定义:
- 监督学习(supervised learning):训练数据有标记信息的学习任务为,分类和回归都是监督学习的范畴。
- 无监督学习(unsupervised learning):训练数据没有标记信息的学习任务,常见的有聚类和关联规则。
参考:https://www.heywhale.com/mw/project/67ecd5310fd2431a31dc64f2