DE-PSO(文献阅读自用)

本文介绍了一种改进的差分进化算法DE-PSO,它结合了粒子群算法的进化机制,通过粒子群差分变异策略和DE/current-rand/1变异策略提升全局搜索和多样性。此外,文章探讨了扰动策略以防止早熟,实验结果显示算法在收敛精度和速度上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        为进一步提高差分进化算法优化性能,结合粒子群算法进化机制,提出DE-PSO,使用粒子群差分变异策略和DE/current-rand/1变异策略(提高算法全局能力和增加种群多样性),扰动策略(跳出局部,避免早熟)。通过测试函数知算法收敛精度和收敛速度较优。

一.粒子群差分变异策略和DE/current-rand/1变异策略

1.粒子群差分变异策略

a.随机惯性权重

        随机惯性权重是为了更好的平衡全局探索和局部开发

\mu _{min},\mu _{max}随机惯性权重最小,大值,\sigma权重调和因子,N(0,1)标准正态分布。

b.粒子群差分变异策略

里面用到个体最好值和全局最好值。

2.DE/current-rand/1变异策略

        粒子群差分变异策略用到个体最好值和全局最好值,对于单峰函数效果很好(可检验算法局部开发能力),对于多峰函数来说该策略是往当前最优值进化的,一旦当前最优是局部最优算法可能就陷入局部而停滞,为了补偿这个情况,将DE/current-rand/1作为辅助变异算子(增加种群多样性

二.扰动策略

        为增加种群多样性来避免早熟停滞,加入扰动。

用到个体的分量最大值和分量最小值。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值