线性模型学习

1:线性模型基本形式

给定由d个属性描述的示例x=\left \{ x_{1};x_{2};...;x_{d} \right \},其中x_{i}x在第i个属性上的取值,线性模型(linear model)试图学得一个通过属性的线性组合来进行预测的函数,即

许多功能更为强大的非线性模型(nonlinear model)可在线性模型的基础上通过引入层级结构或高维映射而得。此外,由于w直观表达了各属性在预测中的重要性,因此线性模型有很好的可解释性(comprehensibility)。 

2:线性回归

给定数据集D=\left \{ (x_{1},y_{1}), (x_{2},y_{2}),..., (x_{m},y_{m})\right \}。”线性回归“(linear regression)试图学得一个线性模型尽可能准确地预测实值输出标记。

线性回归试图学得

 均方误差是回归任务中最常用的性能度量,因此我们可试图让均方误差最小化,即

均方误差有非常好的几何意义,它对应了常用的欧几里得距离或简称”欧式距离“。基于均方误差最小化来进行模型求解的方法称为”最小二乘法“。在线性回归中,最小二乘法是试图找到一条直线,使所有样本到直线上的欧式距离之和最小。

求解w和b使E_{(w,b)}=\sum_{i=1}^{m}(y_{i}-wx_{i}-b)^{2}最小化的过程,称为线性回归模型的最小二乘”参数估计“(parameter estimation)。我们可以将E_{(w,b)}分别对w和b求导,得到

然后令偏导为0,求得w和b的最优闭式解

更一般的情形是如本节开头的数据集D,样本由d个属性描述。

这称为”多元线性回归“(multivariate linear regression)。

 

3:线性判别分析

给定训练样例集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能近、异类样例的投影点尽可能远离;在对新样本进行分类时,将其投影到同样的这条直线上,再根据投影点的位置来确定新样本的类别。

给定数据集D=\left \{ (x_{i},y_{i}) \right \}^{m}_{i=1},y_{i}\in\left \{ 0,1 \right \},令X_{i}\mu_{i}\Sigma _{i}分别表示第i\in\left \{0,1 \right \}类示例的集合、均值向量、协方差矩阵。若将数据投影到直线w上,则两类样本的中心在直线上的投影分别为
w^{T}\mu _{0}w^{T}\mu _{1};若将所有样本点都投影到直线上,则两类样本的协方差分别为w^{T}\Sigma _{0}ww^{T}\Sigma _{1}w

欲使同样样例的投影点尽可能接近,可以让同类样例投影点的协方差尽可能小,即w^{T}\Sigma _{0}w+w^{T}\Sigma _{1}w尽可能小;而欲使异类样例的投影点尽可能原理,可以让类中心之间的距离尽可能大,即\left | \left | w^{T}\mu _{0}-w^{T}\mu _{1} \right | \right |^{2}_{2}尽可能大。同时考虑二者,则可得到欲最大化的目标

J=\frac{\left | \left | w^{T}\mu _{0}-w^{T}\mu _{1} \right | \right |^{2}_{2}}{w^{T}\Sigma _{0}w+w^{T}\Sigma _{1}w}

           =\frac{w^{T}(\mu _{0}-\mu _{1})(\mu _{0}-\mu _{1})^{T}w}{w^{T}(\Sigma_{0}+\Sigma_{1})w}

定义“类内散度矩阵”(within-class scatter matrix)

S_{w}=\Sigma_{0}+\Sigma_{1}

这就是LDA欲最大化的目标,即S_{b}S_{w}的”广义瑞利商”(generalized Rayleigh quotient)。 

 

 

4:多分类学习

我们考虑N个类别C_{1},C_{2},...,C_{N},多分类学习的基本思想是“拆解法”,即将多分类任务拆分为若干个二分类任务求解。具体来说,先对问题进行拆分,然后为拆出的每个二分类任务训练一个分类器;在测试时,对这些分类器的预测结果进行集成以获得最终的多分类结果。

最经典的拆分策略有三种:“一对一”(One vs. One,简称OvO)、“一对其余”(One vs. Rest,简称OvR)和“多对多”(Many vs. Many,简称MvM)

给定数据集D=\left \{ (x_{1},y_{1}), (x_{2},y_{2}),..., (x_{m},y_{m})\right \},y_{i}\in \left \{ C_{1},C_{2},...,C_{N} \right \}。OvO将这N个类别两两配对,从而产生\frac{N(N-1)}{2}个二分类任务,例如OvO将区分类别C_{i}C_{j}训练一个分类器,该分类器把D中的C_{i}类样例作为正例,C_{j}类样例作为反例。在测试阶段,新样本将同时提交给所有分类器,于是我们将得到\frac{N(N-1)}{2}个分类结果,最终结果可通过投票产生:即把被预测得最多的类别作为最终分类结果。

OvR则是每次将一个类的样例作为正例、所有其他类的样例作为反例来训练N个分类器。在测试时,若仅有一个分类器预测为正类,则对应的类别标记作为最终分类结果。若有多个分类器预测为正类,则通常考虑各分类器的预测置信度,选择置信读最大的类别标记作为分类结果。

OvO的存储开销和测试时间开销通常比OvR更大。在类别很多时,OvO的训练时间开销通常比OvR更小。至于预测性能,则取决于具体的数据分布,在多数情形下两者差不多。

MvM是每次将若干个类作为正类,若干个类其他类作为反类。最常用的MvM技术:“纠错输出码”(Error Correcting Output Codes,简称ECOC)

ECOC是将编码的思想引入类别拆分,并尽可能在解码过程中具有容错性。ECOC工作过程主要分为两步:

  • 编码:对N个类别做M次划分,每次划分将一部分类别划为正类,一部分划为反类,从而形成一个二分类训练集;这样一共产生M个训练集,可训练出M个分类器。
  • 解码:M个分类器分别对测试样本进行预测,这些预测标记组成一个编码。将这个预测编码与每个类别各自的编码进行比较,返回其中距离最小的类别作为最终预测结果。

ECOC编码对分类器的错误有一定的容忍和修正能力。一般来说,对同一个学习任务,ECOC编码越长,纠错能力越强。所需训练的分类器越多,计算、存储开销都会增大;另一方面,对有限类别数,可能的组合数目是有限的,码长超过一定范围就失去了意义。对同等长度的编码,理论上来说,任意两个类别之间的编码距离越远,则纠错能力越强。

5:类别不平衡问题

类别不平衡(class-imbalance)指分类任务中不同类别的训练样例数目差别很大的情况。我们假定正类样例较少,反类样例较多。

从线性分类器的角度讨论,在我们用y=w^{T}x+b对新样本x进行分类时,事实上是在用预测出的y值与一个阈值进行比较,例如通常在y> 0.5时判别为正例,否则为反例。y实际上表达了正例的可能性,几率\frac{y}{1-y}则反映了正例可能性与反例可能性之比,阈值设置为0.5恰表明分类器认为真实正、反例可能性相同,即分类器决策规则为

\frac{y}{1-y}> 1,则预测为正例

m^{+}表示正例数目,m^{-}表示反例数目,则观测几率是\frac{m^{+}}{m^{-}},由于我们通常假设训练集是真实样本总体的无偏采样,因此观测几率就代表了真实几率。于是,只要分类器的预测几率高于观测几率就应判定为正例,即

\frac{y}{1-y}> \frac{m^{+}}{m^{-}},则预测为正例

只需令

\frac{y^{'}}{1-y^{'}}=\frac{y}{1-y}\times \frac{m^{-}}{m^{+}}

这就是类别不平衡学习的一个基本策略——“再缩放”(rescaling).

再放缩思想虽简单,但实际操作并不平凡,主要是因为“训练集是真实样本总体的无偏采样”这个假设往往并不成立。三类做法:第一类是直接对训练集里的反类样例进行“欠采样”,即取出一些反例使得正、反例数目接近,然后再进行学习;第二类是对训练集里的正类样例进行“过采样”,即增加一些正例使得正、反例数目接近,然后在进行学习;第三类则是直接基于原始训练集进行学习,但在用训练好的分类器进行预测时,将\frac{y^{'}}{1-y^{'}}=\frac{y}{1-y}\times \frac{m^{-}}{m^{+}}嵌入到其决策过程中,称为“阈值移动”。

欠采样法的时间开销通常远小于过采样法。过采样法的代表性算法SMOTE是通过对训练集里的正例进行差值来产生额外的正例。欠采样法的代表性算法EasyEnsemble则是利用集成学习机制,将反例划分为若干个集合供不同学习器使用,这样对每个学习器来看都进行了欠采样,但在全局来看却不会丢失重要信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值