动态规划将原问题分解成若干个子问题,通过解决子问题并保存结果来避免重复计算,从而提高算法效率。
总的来说动态规划就是寻找问题特定的公式(状态转移公式);
最简单的比如斐波那契数列
f(x) = f(x-1) + f(x-2)
那么就可以创建一个数组让他前两项等于1,之后遍历就可以求出答案
#include <bits/stdc++.h>
using namespace std;
int arr[999];
int fbnq()
{
arr[0] = 1;
arr[1] = 1;
for(int i = 2;i < 100;++i) arr[i] = arr[i-1] + arr[i-2];
}
int main()
{
fbnq();
for(int i = 0;i < 100;++i) cout << arr[i] << ' ';
}
其他简单问题还有:一千题,No.0001(统计方案)和一千题,No.0002(小明养猪的故事)
实际上之前的记忆化搜索也是动态规划的一种实现方式,但是他没有公式法简单
unordered_map<int,int> m;
int fbnq(int e)
{
if(e == 1 || e == 2) return 1;
if(m.find(e) == m.end()) m[e] = fbnq(e-1) + fbnq(e-2);
return m[e];
}