人脸特征标注——OpenCV

导入必要的库

import tkinter as tk: 导入Tkinter库,并将其重命名为tk。
from tkinter import filedialog: 从Tkinter中导入文件对话框功能。
import cv2: 导入OpenCV库。
from PIL import Image, ImageTk: 从PIL库导入Image和ImageTk模块,用于处理图像。
from tkinter import messagebox: 从Tkinter中导入消息框功能,用于显示消息提示框。
import dlib:导入dlib库,这个库用于人脸检测和关键点标注。

import tkinter as tk
from tkinter import filedialog
import cv2
from PIL import Image, ImageTk
from tkinter import messagebox
import dlib

创建窗口

创建了一个Tkinter窗口实例win,设置窗口标题为"特征标注",大小为800x650像素。

win = tk.Tk()
win.title("特征标注")
win.geometry("800x650")

显示原始图片和标注后的图片

创建了两个空的标签控件image_label_originalimage_label_landmarks,用于显示原始图像和带有标注的图像。

mage_label_original = tk.Label(win)
image_label_landmarks = tk.Label(win)

存储用户选择的图片路径

初始化一个变量selected_image_path,用于存储用户选择的图片路径。

selected_image_path = None

字体样式和大小

定义了字体样式my_font,使用Times New Roman字体,大小为20。

my_font = ("Times New Roman", 20)

定义了select_image函数

global selected_image_path: 声明selected_image_path为全局变量,以便在函数内部修改其值。

selected_image_path = filedialog.askopenfilename():
使用文件对话框让用户选择一个图像文件,并将选择的文件路径存储在selected_image_path变量中。

if selected_image_path:: 检查是否成功选择了图像文件。

img = cv2.imread(selected_image_path):
使用OpenCV的imread()函数读取选择的图像文件,并将其存储在img变量中。

img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB):
将BGR格式的图像转换为RGB格式,便于后续处理。

img_pil = Image.fromarray(img_rgb): 将RGB格式的图像数据转换为PIL图像对象。

img_pil = img_pil.resize((300, 300), Image.Resampling.LANCZOS):
调整图像大小为300x300像素,使用LANCZOS插值方法保持图像质量。

img_tk = ImageTk.PhotoImage(image=img_pil):
将PIL图像对象转换为Tkinter图像对象,用于在GUI中显示。

image_label_original.config(image=img_tk): 在原始图像标签控件上配置显示图像。

image_label_original.image = img_tk: 更新原始图像标签的图像数据,确保图像正确显示在GUI中。

def select_image():
    global selected_image_path
    selected_image_path = filedialog.askopenfilename()

    if selected_image_path:
        img = cv2.imread(selected_image_path)
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img_pil = Image.fromarray(img_rgb)
        img_pil = img_pil.resize((300, 300), Image.Resampling.LANCZOS)
        img_tk = ImageTk.PhotoImage(image=img_pil)

        image_label_original.config(image=img_tk)
        image_label_original.image = img_tk

定义了annotate_landmarks()函数

if selected_image_pat

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值