目录
学习目标
了解支持向量机的优化目标
了解软间隔和硬间隔的区别
了解惩罚参数 C 的作用
知道常用的核方法
知道SVM的损失函数
🍔支持向量机概述
支持向量机在深度学习技术出现之前,使用高斯核的支持向量机在很多分类问题上取得了很好的结果,支持向量机不仅用于分类,还可以用于回归问题。它具有泛化性能好,适合小样本和高维特征的优点。
SVM 是 N 维空间的分类超平面,它将空间切分成两部分。对于二维空间,它是一条线,对于三维空间,它是一个平面,对于更高维空间,它是超平面。
一般情况下,给定一组样本可以得到不止一个可行的线性分类器。那么,在多个可行的线性分类器中,什么样的分类器是最好的?
直观上看,为了得到泛化性更好的分类器,分类平面应该应该不偏向于任何一类,并且距离两个样本都尽可能远,这种以最大化分类间隔为目标的线性分类器就是支持向量机。