拥抱AI未来:Hugging Face平台使用指南与实战技巧

88bba47677184d4e93198a05aca307d9.jpeg

目录

 

🍔 huggingface介绍

🍔 使用步骤

2.1 创建一个帐户

2.2 登录

2.3 在huggingface上创建模型仓库

2.4 上传本地模型到平台

1 页面发布步骤介绍

2 git clone操作

3 把我们要上传的模型文件copy到本地mymodel04文件夹中

4 上传本地mymodel04文件夹中的模型文件,到服务器mymodel04中

5 确认模型是否已经上传到HuggingFace平台上

2.5 通过git clone进行模型下载

2.6 加载下载的模型

🍔 小结


ab65cb5779584dfebbe41ccfeb98fb8b.gif

学习目标

  • 掌握huggingface平台使用

🍔 huggingface介绍

Huggingface总部位于纽约,是一家专注于自然语言处理、人工智能和分布式系统的创业公司。他们所提供的聊天机器人技术一直颇受欢迎,但更出名的是他们在NLP开源社区上的贡献。Huggingface一直致力于自然语言处理NLP技术的平民化(democratize),希望每个人都能用上最先进(SOTA, state-of-the-art)的NLP技术,而非困窘于训练资源的匮乏。同时Hugging Face专注于NLP技术,拥有大型的开源社区。尤其是在github上开源的自然语言处理,预训练模型库 Transformers,已被下载超过一百万次,github上超过24000个star。Transformers 提供了NLP领域大量state-of-art的 预训练语言模型结构的模型和调用框架。

🍔 使用步骤

  • 第一步: 在https://huggingface.co/join上创建一个帐户
  • 第二步: 在可视化界面登陆用户
  • 第三步: 在huggingface上创建模型仓库
  • 第四步: 通过git把本地模型,上传到HuggingFace平台的模型仓库中
  • 第五步: 通过git clone进行模型下载
  • 第六步: 加载下载的模型

2.1 创建一个帐户

https://huggingface.co/join上创建一个帐户

7f8ed7e813bd4738bbffd858e576c684.png

d4dbc89f47c9447d993cac951cb1ee3b.png

2.2 登录

c7b20c071ebf4e0aa76d94503f2487f5.png

2.3 在huggingface上创建模型仓库

  • 在huggingFace平台上注册完毕后,会弹出欢迎页面: https://huggingface.co/welcome 该页面显示了详细的上传模型,下载模型的方法。
  • 详细如下:

f14ce4f79aa84833ada78303601c5165.png

  • 通过界面在huggingface上创建模型仓库

  • 点击个人头像,点击创建模型命令【new Mode】

16a9770364c74db0ba88109c515171ed.png

  • 输入【自己名称】、【模型名称】

906bc8923c63486d8d084b89a18bf64a.png

  • 显示自己创建的模型

fe61ee2ed24e48c8bf5b458e65a662b0.png

2.4 上传本地模型到平台

通过git把本地模型,上传到HuggingFace平台的模型仓库中

1 页面发布步骤介绍

f19956ff48dd426fa4ea926e368dd387.png

2 git clone操作

先通过git clone操作把huggingface服务器上的文件目录给“拉”下来在本地路径下,执行如下命令:

# xxx/mymodel04 --> 这个是你在huggingface上创建的代码仓库, 根据自己的情况适当更换一下.
git clone https://huggingface.co/xxx/mymodel04

注意点:

  • 在本地会出现一个mymodel04文件夹

  • 在执行git clone之前确保本地文件夹是否已经存在mymodel04,避免本地文件被覆盖。或者把已经存在的mymodel04目录修改名字.

a7865e60b9e341788ba825a59042242e.png

3 把我们要上传的模型文件copy到本地mymodel04文件夹中

  • 先将目录先切换至mymodel04文件夹中
cd mymodel04
  • 根据目录结构,选中把bert_finetuning_test目录下的模型文件上传到huggingFace平台,需要把bert_finetuning_test目录下的模型文件,copy到mymodel04目录下。
cp -r /root/transformers/examples/pytorch/text-classification/bert-base-uncased-finetuning  . 

4 上传本地mymodel04文件夹中的模型文件,到服务器mymodel04中

git add .       # 把本地待上传的模型文件与hugging平台建立关联
git commit -m "commit from $USER" # 添加评注
git push    # 向huggingface平台上传模型文件

注意点: git push 向服务器上传模型文件,需要两次输入密码

ca598e7037d941a2ac8801883ddea2f4.png

5 确认模型是否已经上传到HuggingFace平台上

488a169925c54ffaba15612100dc08d6.png

2.5 通过git clone进行模型下载

git clone https://huggingface.co/xxx/mymodel4

2.6 加载下载的模型

import torch
from transformers import AutoModel, AutoTokenizer

# 网络加载
tokenizer = AutoTokenizer.from_pretrained('xxx/mymodel4')
model = AutoModel.from_pretrained('xxx/mymodel4')

index = tokenizer.encode("Talk is cheap", "Please show me your code!")
# 102是bert模型中的间隔(结束)符号的数值映射
mark = 102

# 找到第一个102的索引, 即句子对的间隔符号
k = index.index(mark)

# 句子对分割id列表, 由0,1组成, 0的位置代表第一个句子, 1的位置代表第二个句子
segments_ids = [0]*(k + 1) + [1]*(len(index) - k - 1)
# 转化为tensor
tokens_tensor = torch.tensor([index])
segments_tensors = torch.tensor([segments_ids])

# 使用评估模式
with torch.no_grad():
    # 使用模型预测获得结果
    result = model(tokens_tensor, token_type_ids=segments_tensors)
    # 打印预测结果以及张量尺寸
    print(result)
    print(result[0].shape)
  • 输出效果:
(tensor([[[-0.1591,  0.0816,  0.4366,  ...,  0.0307, -0.0419,  0.3326],
         [-0.3387, -0.0445,  0.9261,  ..., -0.0232, -0.0023,  0.2407],
         [-0.0427, -0.1688,  0.5533,  ..., -0.1092,  0.1071,  0.4287],
         ...,
         [-0.1800, -0.3889, -0.1001,  ..., -0.1369,  0.0469,  0.9429],
         [-0.2970, -0.0023,  0.1976,  ...,  0.3776, -0.0069,  0.2029],
         [ 0.7061,  0.0102, -0.4738,  ...,  0.2246, -0.7604, -0.2503]]]), tensor([[-3.5925e-01,  2.0294e-02, -2.3487e-01,  4.5763e-01, -6.1821e-02,
          2.4697e-02,  3.8172e-01, -1.8212e-01,  3.4533e-01, -9.7177e-01,
          1.1063e-01,  7.8944e-02,  8.2582e-01,  1.9020e-01,  6.5513e-01,
         -1.8114e-01,  3.9617e-02, -5.6230e-02,  1.5207e-01, -3.2552e-01,
          ...
          1.4417e-01,  3.0337e-01, -6.6146e-01, -9.6959e-02,  8.9790e-02,
          1.2345e-01, -5.9831e-02,  2.2399e-01,  8.2549e-02,  6.7749e-01,
          1.4473e-01,  5.4490e-01,  5.9272e-01,  3.4453e-01, -8.9982e-02,
         -1.2631e-01, -1.9465e-01,  6.5992e-01]]))
torch.Size([1, 12, 768])

🍔 小结

学习了通过微调脚本微调后模型的使用步骤:

  • 第一步: 在https://huggingface.co/join上创建一个帐户

  • 第二步: 在可视化界面登陆用户

  • 第三步: 在huggingface上创建模型仓库

  • 第四步: 通过git把本地模型,上传到HuggingFace平台的模型仓库中

  • 第五步: 通过git clone进行模型下载

  • 第六步: 加载下载的模型

1a2ee062c9ad4a89aae366fa0dde5f47.gif 

a735c42edef24f64a23f0ba3daad641a.jpeg 

 

你好!关于huggingface使用教程,我可以给你一些指导。首先,huggingface是一个提供自然语言处理(NLP)模型和工具的开源库。它包含了许多预训练的模型,可以用于文本生成、文本分类、命名实体识别等任务。 下面是一个简单的教程,帮助你开始使用huggingface: 1. 安装huggingface库:你可以使用pip命令安装huggingface库,运行以下命令: ``` pip install transformers ``` 2. 导入所需的模型和工具:根据你的任务需求,导入相应的模型和工具。例如,如果你想使用GPT模型进行文本生成,可以运行以下代码: ```python from transformers import GPT2LMHeadModel, GPT2Tokenizer # 加载GPT模型和分词器 model = GPT2LMHeadModel.from_pretrained('gpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2') ``` 3. 处理输入数据:使用分词器对输入进行分词和编码。例如,如果你想生成一段文本,可以运行以下代码: ```python input_text = "你要生成的文本" # 对输入进行分词和编码 input_ids = tokenizer.encode(input_text, return_tensors='pt') ``` 4. 生成输出:使用加载的模型对输入进行预测并生成输出。例如,对于文本生成任务,可以运行以下代码: ```python # 使用模型生成输出 output = model.generate(input_ids, max_length=100) # 解码输出文本 output_text = tokenizer.decode(output[0], skip_special_tokens=True) print(output_text) ``` 以上是一个简单的huggingface使用教程,希望可以帮助到你入门。如果你想了解更多关于huggingface的功能和用法,可以参考官方文档和示例代码。祝你使用huggingface愉快!如果你还有其他问题,欢迎继续提问。
评论 121
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值