约 数之和

对于一个数 x

x = {p_1}^{\alpha_1} * {p_2}^{\alpha_2} * {p_3}^{\alpha_3}*...*{p_k}^{\alpha_k}

其中:p_nx的各个质因数,上式是x的质因数乘积式。 

约数个数:(\alpha_1+1)*(\alpha_2+1)*(\alpha_3+1)*...*(\alpha_k+1)

约数之和:({p_1}^0+{p_1}^1+...+{p_1}^{\alpha_1})*({p_2}^0+{p_2}^1+...+{p_2}^{\alpha_2})*...*({p_k}^0+...+{p_k}^{\alpha_k}) 

约数之和

 step1:

采用分解质因数的方法,计算出x的每一个质因数p_n的次数\alpha_n

(分解质因数的blog:http://t.csdnimg.cn/HppLT

step2:

遍历记录质因数和质因数次数的unordered_map容器primes,套用公式,得到结果

题目如下:

给定 n 个正整数 ai,请你输出这些数的乘积的约数之和,答案对 109+7 取模。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含一个整数 ai。

输出格式

输出一个整数,表示所给正整数的乘积的约数之和,答案需对 109+7 取模。

数据范围

1≤n≤100
1≤ai≤2×109

代码如下:

#include<iostream>
#include<cstring>
#include<unordered_map>

using namespace std;

int mod = 1e9+7;
int n;

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    
    cin >> n;
    
    unordered_map<int,int >primes;
    
    while(n--)
    {
        int x;
        cin >> x;
        
        for (int i = 2;i<=x/i;++i)
        {
            while(x % i == 0)
            {
                x = x/i;
                primes[i]++;
            }
        }
        if (x > 1)
        primes[x]++;
    }
    
    long long res = 1;
    
    for (auto t : primes)
    {
        int a = t.first;
        int b =t.second;
        long long k = 1;
        
        while(b--)
        k = (k*a + 1) % mod;
        
        res = res * k % mod;
    }
    cout << res %  mod;
    return 0;
}

(1)公式推导 

(2)while(b--)  k = (k*a+1) % mod

 这一步计算过程类似于秦九韶算法,举个例子:

f(x) = x^3 + x^2 + x^1+ x^0 = x(x^2+x+1)+1 = x(x(x+1)+1)+1

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值