Hecy 又接了个新任务:BE 处理。
BE 中有一类被称为 GBE。
以下是 GBE 的定义:
- 空表达式是 GBE
- 如果表达式 A 是 GBE,则 [A] 与 (A) 都是 GBE
- 如果 A 与 B 都是 GBE,那么 AB 是 GBE
下面给出一个 BE,求至少添加多少字符能使这个 BE 成为 GBE。
注意:BE 是一个仅由(
、)
、[
、]
四种字符中的若干种构成的字符串。
输入格式
输入仅一行,为字符串 BE。
输出格式
输出仅一个整数,表示增加的最少字符数。
数据范围
对于所有输入字符串,其长度小于100。
输入样例:
[])
输出样例:
1
题目拿到手看了一下,是要括号配对(有两种情况),确实和 1222.密码脱落 很相似,因为都是 配对问题,状态转移都是和区间的边界值有关,这题很容易想到区间dp区间dp 。
先附上其他大佬的yan氏dp的分析图:先附上其他大佬的yan氏dp的分析图:传送门
老样子按照dp步骤来:老样子按照dp步骤来:
1.状态定义:dp(i,j)表示区间[i,j]中添加字符使其成为GBE的集合,属性为min1.状态定义:dp(i,j)表示区间[i,j]中添加字符使其成为GBE的集合,属性为min
2.状态转移(这一步比较难):2.状态转移(这一步比较难):
这个集合由哪些组成呢?按照最后不同的一步来,假如i与j匹配,只需要从dp(i+1,j−1)那个集合转移过来这个集合由哪些组成呢?按照最后不同的一步来,假如i与j匹配,只需要从dp(i+1,j−1)那个集合转移过来
假如不匹配,那似乎应该从dp(i+1,j)或者dp(i,j−1)dp(i+1,j)或者dp(i,j−1)来,这里是最大的坑。
因为题目中有个条件是ABAB都是GBEGBE,那么ABAB也是。
那如果字符串是()[],需要匹配是0个,但是第一个和最后一个是不匹配的,就会转移错误。
所以,我们需要枚举区间[i,j]里的每个分隔点,看是否会出现题目出现的第三种AB都是GBE所以,我们需要枚举区间[i,j]里的每个分隔点,看是否会出现题目出现的第三种AB都是GBE(第二种已经被包含),使得需要添加的更少。
dp(i,j)=dp(i+1,j−1)(s[i]==s[j])dp(i,j)=dp(i+1,j−1)(s[i]==s[j])
dp(i,j)=min(dp(i,j),dp(i,k)+dp(k+1,j))(i<=k<=j)dp(i,j)=min(dp(i,j),dp(i,k)+dp(k+1,j))(i<=k<=j)
3.初始化:
全部是INF,因为要取最小值,不合法的状态可以在递推的时候变成0,或者改变k的范围。但是在这道题全部是INF,因为要取最小值,不合法的状态可以在递推的时候变成0,或者改变k的范围。但是在这道题里,不影响。
或者:一开始全部为0,然后每次在到一个新的[i,j]区间时全部设成INF,这样不合法区间就为0,就不用特或者:一开始全部为0,然后每次在到一个新的[i,j]区间时全部设成INF,这样不合法区间就为0,就不用特判。
4.递推顺序:
因为要用到后面的状态,所以i要逆序枚举。因为要用到后面的状态,所以i要逆序枚举。
5.注意点:
1.当枚举分割点的时候,已经不需要在看小区间内是否端点匹配了,因为更小的区间的最小值已经在之前更新过了。
2.当i=j−1时,s[i]和s[j]match的时候,dp(i,j)应该为0,但是dp(i+1,j−1)为不合法状态为INF,2.当i=j−1时,s[i]和s[j]match的时候,dp(i,j)应该为0,但是dp(i+1,j−1)为不合法状态为INF,如果转移过来需要特判。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<string>
#include<map>
#include<set>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<stack>
#include<climits>
#define x first
#define y second
#define MP make_pair
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int N = 100 + 5;
int dp[N][N];
char s[N];
bool match(int i, int j){
if (s[i] == '[' && s[j] == ']') return true;
if (s[i] == '(' && s[j] == ')') return true;
return false;
}
int main(void){
scanf("%s", s);
int n = strlen(s);
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
dp[i][j] = 1e9;
for (int i = n - 1; i > -1; --i){
for (int j = i; j < n; ++j){
if (i == j){
dp[i][j] = 1; continue;
}
if (match(i, j)) dp[i][j] = min(dp[i][j], (i == j - 1 ? 0 : dp[i + 1][j - 1]) );
for (int k = i; k <= j; ++k){
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]);
}
// printf("(%d, %d)%d ", i, j, dp[i][j]);
}
// cout << endl;
}
cout << dp[0][n - 1];
return 0;
}