括号配对

Hecy 又接了个新任务:BE 处理。

BE 中有一类被称为 GBE。

以下是 GBE 的定义:

  • 空表达式是 GBE
  • 如果表达式 A 是 GBE,则 [A] 与 (A) 都是 GBE
  • 如果 A 与 B 都是 GBE,那么 AB 是 GBE

下面给出一个 BE,求至少添加多少字符能使这个 BE 成为 GBE。

注意:BE 是一个仅由()[]四种字符中的若干种构成的字符串。

输入格式

输入仅一行,为字符串 BE。

输出格式

输出仅一个整数,表示增加的最少字符数。

数据范围

对于所有输入字符串,其长度小于100。

输入样例:
[])
输出样例:
1

题目拿到手看了一下,是要括号配对(有两种情况),确实和 1222.密码脱落 很相似,因为都是 配对问题,状态转移都是和区间的边界值有关,这题很容易想到区间dp区间dp 。

先附上其他大佬的yan氏dp的分析图:先附上其他大佬的yan氏dp的分析图:传送门

老样子按照dp步骤来:老样子按照dp步骤来:
1.状态定义:dp(i,j)表示区间[i,j]中添加字符使其成为GBE的集合,属性为min1.状态定义:dp(i,j)表示区间[i,j]中添加字符使其成为GBE的集合,属性为min
2.状态转移(这一步比较难):2.状态转移(这一步比较难):
这个集合由哪些组成呢?按照最后不同的一步来,假如i与j匹配,只需要从dp(i+1,j−1)那个集合转移过来这个集合由哪些组成呢?按照最后不同的一步来,假如i与j匹配,只需要从dp(i+1,j−1)那个集合转移过来
假如不匹配,那似乎应该从dp(i+1,j)或者dp(i,j−1)dp(i+1,j)或者dp(i,j−1)来,这里是最大的坑。

因为题目中有个条件是ABAB都是GBEGBE,那么ABAB也是。
那如果字符串是()[],需要匹配是0个,但是第一个和最后一个是不匹配的,就会转移错误。

所以,我们需要枚举区间[i,j]里的每个分隔点,看是否会出现题目出现的第三种AB都是GBE所以,我们需要枚举区间[i,j]里的每个分隔点,看是否会出现题目出现的第三种AB都是GBE(第二种已经被包含),使得需要添加的更少。

dp(i,j)=dp(i+1,j−1)(s[i]==s[j])dp(i,j)=dp(i+1,j−1)(s[i]==s[j])
dp(i,j)=min(dp(i,j),dp(i,k)+dp(k+1,j))(i<=k<=j)dp(i,j)=min(dp(i,j),dp(i,k)+dp(k+1,j))(i<=k<=j)
3.初始化:
全部是INF,因为要取最小值,不合法的状态可以在递推的时候变成0,或者改变k的范围。但是在这道题全部是INF,因为要取最小值,不合法的状态可以在递推的时候变成0,或者改变k的范围。但是在这道题里,不影响。

或者:一开始全部为0,然后每次在到一个新的[i,j]区间时全部设成INF,这样不合法区间就为0,就不用特或者:一开始全部为0,然后每次在到一个新的[i,j]区间时全部设成INF,这样不合法区间就为0,就不用特判。

4.递推顺序:
因为要用到后面的状态,所以i要逆序枚举。因为要用到后面的状态,所以i要逆序枚举。
5.注意点:
1.当枚举分割点的时候,已经不需要在看小区间内是否端点匹配了,因为更小的区间的最小值已经在之前更新过了。
2.当i=j−1时,s[i]和s[j]match的时候,dp(i,j)应该为0,但是dp(i+1,j−1)为不合法状态为INF,2.当i=j−1时,s[i]和s[j]match的时候,dp(i,j)应该为0,但是dp(i+1,j−1)为不合法状态为INF,如果转移过来需要特判。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<string>
#include<map>
#include<set>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<stack>
#include<climits>
#define x first
#define y second
#define MP make_pair
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;

const int N = 100 + 5;
int dp[N][N];
char s[N];

bool match(int i, int j){
    if (s[i] == '[' && s[j] == ']') return true;
    if (s[i] == '(' && s[j] == ')') return true;
    return false;
}

int main(void){
    scanf("%s", s);
    int n = strlen(s);

    for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
            dp[i][j] = 1e9;

    for (int i = n - 1; i > -1; --i){
        for (int j = i; j < n; ++j){
            if (i == j){
                dp[i][j] = 1; continue;
            }
            if (match(i, j)) dp[i][j] = min(dp[i][j], (i == j - 1 ? 0 : dp[i + 1][j - 1]) );
            for (int k = i; k <= j; ++k){
                dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]);
            }
            // printf("(%d, %d)%d ", i, j, dp[i][j]);
        }
        // cout << endl;
    }

    cout << dp[0][n - 1];
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值