深度剖析数据在内存中的存储

本文详细介绍了编程中的数据类型分类、整型和浮点型在内存中的存储方式,包括原码、反码和补码的区别,以及大小端字节序的概念。此外,还解释了IEEE754标准如何在浮点数中表示数值,涉及了不同类型的存储规则和特殊处理。
摘要由CSDN通过智能技术生成

目录

1. 数据类型介绍

1.1 类型的基本归类:

2. 整形在内存中的存储 

2.1 原码、反码、补码

2.2 大小端介绍 

2.3 练习

3. 浮点型在内存中的存储 

3.1 一个例子

3.2 浮点数存储规

1. 数据类型介绍

基本的内置类型:

char            //字符数据类型

short           //短整型

int               //整形

long            //长整形

long long     //更长整形

folat            //单精度浮点数

double        //双精度浮点数

以及他们所占存储空间的大小。

类型的意义:

1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。

2. 如何看待内存空间的视角。

1.1 类型的基本归类:

整形家族:

char                                                字符在内存中存储的是字符的ASCII值,ASCII码值是整形
         unsigned char                        ,所以字符类型归类到整形家族
         signed char                                        char - 1字节 - 8bit       
short                                                        
         unsigned short [int]                        ASCII码表中规定ASCII码值的范围是0~127
         signed short [int]
int
         unsigned int
         signed int
long
         unsigned long [int]
         signed long [int]

浮点数家族:

float

double

 构造类型: (自定义类型)

> 数组类型

> 结构体类型 struct

> 枚举类型 enum

> 联合类型 union

指针类型 

int *pi;

char *pc;

float* pf;

void* pv;

空类型:

void 表示空类型(无类型)

通常应用于函数的返回类型、函数的参数、指针类型。

2. 整形在内存中的存储 

数据在内存中存储的都是二进制

计算机能够处理的是二进制数据

整形和浮点型数据在内存中也都是以二进制的形式进行存储的

整形的二进制表示形式有3种:原码,补码,反码

正的正式:原码,反码,补码相同

负的整数:原码,反码,补码要进行计算的

2.1 原码、反码、补码

计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。

原码

直接将数值按照正负数的形式翻译成二进制就可以得到原码。

反码

将原码的符号位不变,其他位依次按位取反就可以得到反码

补码

反码+1就得到补码

对于整形来说:数据存放内存中其实存放的是补码。 

为什么呢?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统 一处理;

同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程 是相同的,不需要额外的硬件电路。

2.2 大小端介绍 

大端字节序存储   

把一个数据的低位字符处的数据存放在内存的高地址处

高位字节处的数据存放在内存的低地址处

             

小端字节序存储

把一个数据的低位字节处的数据存放在内存的低地址处

高位字节处的属于,存放在内存的高地址处

为什么有大端和小端:

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元 都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short 型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32 位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因 此就导致了大端存储模式和小端存储模式。

例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为 高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高 地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则 为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式 还是小端模式。

设计一个小程序来判断当前机器的字节序。

int check_sys()
{
	int a = 1;
	return *(char*)&a;
}



int main()
{
	
	if (1 == check_sys())
		printf("小端\n");
	else
		printf("大端\n");

	return 0;
}

2.3 练习

//1.
//输出什么?
#include <stdio.h>
int main()
{
    char a= -1;
    signed char b=-1;
    unsigned char c=-1;
    printf("a=%d,b=%d,c=%d",a,b,c);
    return 0;
}

运行结果如下 

下面程序输出的是什么

#include <stdio.h>
int main()
{
    char a = -128;
    printf("%u\n",a);
    return 0;
}

 运行结果如下

#include <stdio.h>
int main()
{
    char a = 128;
    printf("%u\n",a);
    return 0;
}

 运行结果如下

signed char

 

unsigned char

int i= -20;
unsigned  int  j = 10;
printf("%d\n", i+j); 
//按照补码的形式进行运算,最后格式化成为有符号整数

运行结果如下 

unsigned int i;
for(i = 9; i >= 0; i--)
{
    printf("%u\n",i);
}

 运行结果如下

int main()
{
    char a[1000];
    int i;
    for(i=0; i<1000; i++)
   {
        a[i] = -1-i;
   }
    printf("%d",strlen(a));
    return 0;
}

运行结果如下

#include <stdio.h>
unsigned char i = 0;
int main()
{
    for(i = 0;i<=255;i++)
   {
        printf("hello world\n");
   }
    return 0;
}

 

运行结果如下

3. 浮点型在内存中的存储 

常见的浮点数:

3.14159

1E10

浮点数家族包括: float、double、long double 类型。

浮点数表示的范围:float.h中定义

3.1 一个例子

浮点数存储的例子:

int main()
{
 int n = 9;
 float *pFloat = (float *)&n;
 printf("n的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 *pFloat = 9.0;
 printf("num的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 return 0;
}

运行结果如下

3.2 浮点数存储规则

num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
        (-1)^S * M * 2^E
        (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
        M表示有效数字,大于等于1,小于2。
        2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:

对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。 

IEEE 754对有效数字M和指数E,还有一些特别规定。 

前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的
xxxxxx部分。比如保存1.01的时
候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位
浮点数为例,留给M只有23位,
将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们
知道,科学计数法中的E是可以出
现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数
是127;对于11位的E,这个中间
数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即
10001001。

然后,指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进
制表示形式为:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)
 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值