题目
形如2^P-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果P是个素数,2^P-1不一定也是素数。到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。
任务:从文件中输入P(1000<P<3100000),计算2^P-1的位数和最后500位数字(用十进制高精度数表示)
【输入形式】
文件中只包含一个整数P(1000<P<3100000)
【输出形式】
第一行:十进制高精度数2^P-1的位数。
第2-11行:十进制高精度数2^P-1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)
不必验证2^P-1与P是否为素数。
【样例输入】
1279
【样例输出】
386 00000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000 00000000000000104079321946643990819252403273640855 38615262247266704805319112350403608059673360298012 23944173232418484242161395428100779138356624832346 49081399066056773207629241295093892203457731833496 61583550472959420547689811211693677147548478866962 50138443826029173234888531116082853841658502825560 46662248318909188018470682222031405210266984354887 32958028878050869736186900714720710555703168729087
思路
如果直接计算出2^n-1,当n很大时会超时,不能通过所有数据,所以我们用快速幂,缩短计算
2^n-1的时间,知乎这篇文章详细讲解了快速幂且有具体例子,点击此处跳转。
递归或者非递归快速幂都可以,本篇文章用非递归快速幂,结合了一点位运算,Python模板如下:
def qpow(a, n):
ans = 1
while n:
if n & 1: # 如果 n 的当前末位为 1
ans *= a # ans 乘上当前的 a
ans=ans
a *= a # a 自乘
n >>= 1 # n 往右移一位
return ans
该函数的意义是计算a^n,本题中a就为2。如果题目要求取模(取余),我们尽量在计算幂的过程中取模,就本题而言,如果用上面函数得到的结果最后再取500位会超时,简单来说,乘一个大数比乘一个小数更耗时,我们修改模板如下:
def qpow(a, n, mod):
ans = 1
while n:
if n & 1: # 如果 n 的当前末位为 1
ans *= a # ans 乘上当前的 a
ans=ans%mod
a *= a # a 自乘
n >>= 1 # n 往右移一位
return ans
但问题来了,函数出来的结果已经是保留500位的,我们如何计算位数:
首先我们知道 与 有着相同的位数,因为2的次方满足了最后一位不为零的要求,所以减一后位数并不会改变,那么我们可以直接求 的位数。那么怎么求位数呢?我们不妨设k = ,根据 的位数为n + 1 ,我们只要想办法把k = 中的底数2改为10,指数加一就是位数了。由此想到用10的几次方来代替2,那么就不难想到 =2,这样便可以把k = 中的2代换掉,变为 。根据乘方的原理,将p乘进去,原式便可化为我们最终想要的形式了,所以位数就是。
代码如下:
n = int(input())
print(int(math.log10(2)*n)+1) #输出位数
完整代码
import math
def qpow(a, n, mod):
ans = 1
while n:
if n & 1: # 如果 n 的当前末位为 1
ans *= a # ans 乘上当前的 a
ans=ans%mod
a *= a # a 自乘
n >>= 1 # n 往右移一位
return ans
n = int(input())
print(int(math.log10(2)*n)+1) #输出位数
# 计算 2^n % (10 ** 500) 使用快速幂
mod = 10 ** 500
b_mod = qpow(2,n,mod) - 1 # 计算 2^n - 1 的最后500位
# 使用 list 来存储最后500位的数字
l = []
for i in range(500):
l.append(b_mod % 10) # 获取最后一位
b_mod = b_mod // 10 # 去掉最后一位
# 反向输出每一位数字,并每50位换行
for i in range(499, -1, -1):
print(l[i], end="")
if (499 - i) % 50 == 49: # 每50位换行
print("")