麦森数-蓝桥杯Python-快速幂不超时

题目

形如2^P-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果P是个素数,2^P-1不一定也是素数。到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。
  任务:从文件中输入P(1000<P<3100000),计算2^P-1的位数和最后500位数字(用十进制高精度数表示)
【输入形式】
 文件中只包含一个整数P(1000<P<3100000)
【输出形式】
第一行:十进制高精度数2^P-1的位数。
  第2-11行:十进制高精度数2^P-1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)
  不必验证2^P-1与P是否为素数。
【样例输入】

1279


【样例输出】

386
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000104079321946643990819252403273640855
38615262247266704805319112350403608059673360298012
23944173232418484242161395428100779138356624832346
49081399066056773207629241295093892203457731833496
61583550472959420547689811211693677147548478866962
50138443826029173234888531116082853841658502825560
46662248318909188018470682222031405210266984354887
32958028878050869736186900714720710555703168729087

思路

如果直接计算出2^n-1,当n很大时会超时,不能通过所有数据,所以我们用快速幂,缩短计算

2^n-1的时间,知乎这篇文章详细讲解了快速幂且有具体例子,点击此处跳转。

递归或者非递归快速幂都可以,本篇文章用非递归快速幂,结合了一点位运算,Python模板如下:

def qpow(a, n):
    ans = 1
    while n:
        if n & 1:  # 如果 n 的当前末位为 1
            ans *= a  # ans 乘上当前的 a
            ans=ans
        a *= a  # a 自乘
        n >>= 1  # n 往右移一位
    return ans

该函数的意义是计算a^n,本题中a就为2。如果题目要求取模(取余),我们尽量在计算幂的过程中取模,就本题而言,如果用上面函数得到的结果最后再取500位会超时,简单来说,乘一个大数比乘一个小数更耗时,我们修改模板如下:

def qpow(a, n, mod):
    ans = 1
    while n:
        if n & 1:  # 如果 n 的当前末位为 1
            ans *= a  # ans 乘上当前的 a
            ans=ans%mod
        a *= a  # a 自乘
        n >>= 1  # n 往右移一位
    return ans

但问题来了,函数出来的结果已经是保留500位的,我们如何计算位数:

首先我们知道 2^{p}2^{p}-1有着相同的位数,因为2的次方满足了最后一位不为零的要求,所以减一后位数并不会改变,那么我们可以直接求 2^{p}的位数。那么怎么求位数呢?我们不妨设k =  2^{p},根据 10^{n}的位数为n + 1 ,我们只要想办法把k = 2^{p}中的底数2改为10,指数加一就是位数了。由此想到用10的几次方来代替2,那么就不难想到 10^{log_{10}{2}}=2,这样便可以把k = 2^{p}中的2代换掉,变为 k=(10^{log_{10}{2}})^p。根据乘方的原理,将p乘进去,原式便可化为我们最终想要的形式k=10^{p*log_{10}{2}}了,所以位数就是p*log_{10}2+1

代码如下:

n = int(input())
print(int(math.log10(2)*n)+1) #输出位数

完整代码

import math

def qpow(a, n, mod):
    ans = 1
    while n:
        if n & 1:  # 如果 n 的当前末位为 1
            ans *= a  # ans 乘上当前的 a
            ans=ans%mod
        a *= a  # a 自乘
        n >>= 1  # n 往右移一位
    return ans

n = int(input())
print(int(math.log10(2)*n)+1) #输出位数
# 计算 2^n % (10 ** 500) 使用快速幂
mod = 10 ** 500
b_mod = qpow(2,n,mod) - 1  # 计算 2^n - 1 的最后500位


# 使用 list 来存储最后500位的数字
l = []
for i in range(500):
    l.append(b_mod % 10)  # 获取最后一位
    b_mod = b_mod // 10  # 去掉最后一位

# 反向输出每一位数字,并每50位换行
for i in range(499, -1, -1):
    print(l[i], end="")
    if (499 - i) % 50 == 49:  # 每50位换行
        print("")

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值