计算机组成原理logisim实验二:奇偶校验设计实验

实验2 奇偶校验设计实验

一、设计要求

掌握奇偶校验基本原理和特性,能在 Logisim 中实现偶校验编码电路和检错电路。

二、方案设计

     校验码是用于提升数据在时间(存储)和空间两个维度上的传输可靠性的机制,其主要原理是在被校验数据(原始数据)中引入部分冗余信息(校验数据),使得最终的校验码(原始数据十校验数据)符合某种规则,当校验码中某些位发生错误时(原始数据、校验数据都有可能发生错误),会破坏预定规则,从而使得错误可以被检测,甚至可以被纠正。校验码在生活中有很多的应用,如身份证号、银行卡号、商品条形码和 ISBN 号等。

奇偶校验是一种常见的简单校验方法,其编码规则是引人 1位校验位使得最终的校验码中数字 1的个数保持奇偶性。奇校验约定的编码规则是让整个校验码(包含原始数据和校验位)中1的个数为奇数,而偶校验约定的编码规则是让整个校验码中 1的个数为偶数,设被校验信息 D=D1,D2,…,Dn, 校验位为 P,偶校验时 P的逻辑表达式为:

P=D1D2D3⊕⋯⊕Dn

最终生成的校验码为 D1,D2,…,Dn,P,接收方收到发送方传输的编码后,利用如下公式生成检错码 G:

G=D1D2D3⊕⋯⊕Dn⊕P

若 G=1,则表示接收的信息一定有错,数据应丢弃。若 G=0,则表示传送没有出错,严格地说,是没有出现奇数位错。奇偶校验能够检测出任意奇数位的错误,但无法检测偶数位的错误,奇偶校验无法纠错,但其结构简单,编码效率高,当能通过辅助手段确认出错位置时,还可以实现数据纠错,所以在内存数据校验、磁盘阵列条带数据校验中还普遍使用。

三、实验步骤

(1)设计 16 位数据编码的偶校验编码电路

引入异或门,将其输入引脚数改为16,进行连线,如图1.1。

图 1.1

(2)设计 17 位偶校验编码的检错电路

引入异或门,将其输入引脚数改为17,进行连线,校验位存放在最高位,如图1.2。

图 1.2

(3)偶校验传输测试

在偶校验传输测试电路中,测试偶校验编解码电路功能实现是否正确,并观察数据传输过程中何时会出现误报情况,分析偶校验传输的性能。如图1.3

图 1.3

四、故障与调试

(1)

故障:未将文档中的国标转区位码完善,导致偶校验传输测试电路不能运行。

调试:将国标转区位码完善后,再将偶校验传输测试电路进行电路仿真。

(2)

故障:检验位p1的连线错误,不能将两个节点连接到一起。如图2.1

图 2.1

调试:分开连线,如图2.2。

图 2.2

五、测试与分析

(1)传输过程中没有错误,左右两边的字相同,“检错位”不亮灯,“数据正确”亮绿灯。

(2)有奇数个错误,“检错位”亮红灯。

(3)有偶数个错误,偶校验无法检测出偶数个错误,“误报”亮绿灯。

六、实验思考

(1)完成电路后,仔细观察传输过程,是否有发生错误两边显示的汉字内容却一样的情况?为什么会出现这种情况?

答:有,传输过程中没有发生位错误,或者发生的错误被误认为是正确的数据,校验位没有发挥作用。

(2)如果发生偶数个错误,检错位的值是多少?奇偶校验是否具有纠错功能?

答:是0,奇偶检验没有纠错功能。

(3) Windows 系统中可以利用多个磁盘构建磁盘阵列,以提升存储容量和性能,但多个磁盘构建的存储系统会带来可靠性的降低,通常采用引人一个奇偶校验盘的形式解决,当损坏一块硬盘时,系统仍然可以工作,此时为什么奇偶校验可以工作呢?

答:这是由RAID5的校验机制决定的。RAID5和RAID4一样,数据以块为单位分布到各个硬盘上。RAID 5不对数据进行备份,而是把数据和与其相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。当RAID5的一个磁盘数据损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。

(4)内存条也可以采用奇偶校验,发现错误如何处理呢?

答:可以进入CMOS设置,将内存Parity奇偶校验选项关掉,即设置为Disabled。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不要写代码啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值