在本文中
笔记
本文是根据遗留代码生成模型编写和测试的。这些模型使用完成 API 及其提示/完成交互风格。如果您希望逐字测试本文中描述的技术,我们建议使用gpt-35-turbo-instruct
允许访问完成 API 的模型。然而,对于代码生成,聊天完成 API 和最新的 GPT-4 模型通常会产生最佳结果,但提示需要转换为特定于与这些模型交互的对话风格。
Codex 模型系列是我们的 GPT-3 系列的后代,该系列经过自然语言和数十亿行代码的训练。它在 Python 方面的能力最强,并且精通十多种语言,包括 C#、JavaScript、Go、Perl、PHP、Ruby、Swift、TypeScript、SQL,甚至 Shell。
您可以使用 Codex 执行各种任务,包括:
- 将注释变成代码
- 在上下文中完成下一行或函数
- 为您带来知识,例如为应用程序查找有用的库或 API 调用
- 添加评论
- 重写代码以提高效率
如何使用 Codex 模型
以下是使用 Codex 的一些示例,可以在Azure OpenAI Studio 的Playground 中通过部署 Codex 系列模型(例如code-davinci-002
.
说“你好”(Python)
Ask the user for their name and say "Hello"
"""
创建随机名称 (Python)
1. Create a list of first names
2. Create a list of last names
3. Combine them randomly into a list of 100 full names
"""
创建 MySQL 查询 (Python)
Table customers, columns = [CustomerId, FirstName, LastName, Company, Address, City, State, Country, PostalCode, Phone, Fax, Email, SupportRepId]
Create a MySQL query for all customers in Texas named Jane
"""
query =
解释代码(JavaScript)
// Function 1
var fullNames = [];
for (var i = 0; i < 50; i++) {
fullNames.push(names[Math.floor(Math.random() * names.length)]
+ " " + lastNames[Math.floor(Math.random() * lastNames.length)]);
}
// What does Function 1 do?
最佳实践
从评论、数据或代码开始
您可以在我们的 Playground 中尝试使用 Codex 模型之一