题目描述
某国法律规定,只要一个由
N×M 个小方块组成的旗帜符合如下规则,就是合法的国旗。
- 从最上方若干行(至少一行)的格子全部是白色的;
- 接下来若干行(至少一行)的格子全部是蓝色的;
- 剩下的行(至少一行)全部是红色的;
现有一个棋盘状的布,分成了
N 行
M 列的格子,每个格子是白色蓝色红色之一,小 a 希望把这个布改成该国合法国旗,方法是在一些格子上涂颜料,盖住之前的颜色。
小a很懒,希望涂最少的格子,使这块布成为一个合法的国旗。
输入格式
第一行是两个整数
N,M。
接下来
N 行是一个矩阵,矩阵的每一个小方块是W
(白),B
(蓝),R
(红)中的一个。
输出格式
一个整数,表示至少需要涂多少块。
样例 #1
样例输入 #1
4 5
WRWRW
BWRWB
WRWRW
RWBWR
样例输出 #1
11
提示
样例解释
目标状态是:
WWWWW
BBBBB
RRRRR
RRRRR
一共需要改
11 个格子。
数据范围
对于
100% 的数据,
N,M≤50。
代码实现_
#include<bits/stdc++.h>
using namespace std;
char a[55][55];
int n, m, res, ans;
int solve(int x, int y, int z) {
int s = 0;
for (int i=1;i<=x;i++) {
for (int j=1;j<=m;j++) {
if (a[i][j]!='W') s ++;
}
}
for (int i=x+1; i<=x+y; i++) {
for (int j=1;j<=m;j++) {
if (a[i][j]!='B') s ++;
}
}
for (int i=x+y+1; i<=n; i++) {
for (int j=1;j<=m;j++) {
if (a[i][j]!='R') s ++;
}
}
return s;
}
int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) {
scanf("%s", a[i] + 1);
}
// 用三个循环分别枚举白色,蓝色,红色的行数,求出需要涂色的格子数
// 记录一个最小值
ans = 10000;
for (int i=1;i<=n;i++) { // 白色行数
for (int j=1;j<=n;j++) { // 蓝色行数
for (int k=1;k<=n;k++) { // 红色行数
if (i+j+k==n) {
res = solve(i,j,k); // 求当前方案需要涂的格子数量
if (res < ans) ans = res;
}
}
}
}
printf("%d", ans);
return 0;
}