题目
背包问题:各种货物的重量值存放于数组Weight, 货物的价值值存放于数组Value,背包的容量为bag, 求在不超过背包容量的前提下,背包可以存放的最大价值是多少?
设: int Weight[] = {3,2,4,7,3,1,7};
int Values[] = {5,6,3,19,12,4,2};
bag = 15;
注:weight 和values 数组中不含有负数。
题目分析:
先按照暴力递归的思路来解决,而递归的关键就是“尝试”。用于解决递归问题的“尝试”模型有多个,其中一个就是“从左往右”。
“从左往右”的模型是这样的:
假设有n个货物,各个货物的index 从 0 依次到n-1, 即 weight[0~n-1], values[0~n-1], 从index_0 开始枚举考虑货物的“要” 或者“不要”的情况。(例图中 n == 3)
用暴力递归的方式将每一个分支都走到,我们期望的解也必然在其中。
代码实现:
//代码段1
#include <vector>
#include <iostream>
using namespace std;
int process(vector<int>& W, vector<int>& V, int index ,int bag);
/*
W:所有货物的重量;
V:所有货物的价值;
bag:背包的容量
返回:不超重的情况下,能够得到的最大价值;
*/
int maxValue(vector<int>& W, vector<int>& V, int bag){
if(W.size == 0 || V.size() == 0 || W.size() != V.size()){
return 0;
}
//尝试函数,从第一个货物,即index == 0 开始
process(W,V, 0, bag);
}
/*
W:所有货物的重量;
V:所有货物的价值;
index:当前考虑到了index号货物,
bag:背包容量
返回最大价值;
*/
int process(vector<int>& W, vector<int>& V, int index ,int bag){
//base case
if(bag < 0){
return 0;
}
if(index == W.size()){
return 0;
}
//不要这个货物
int p1 = process(W, V, index+1, bag);
//要这个货物
int p2 = process(W, V, index+1, bag-W[index]) + V[index];
//根据p1和p2 的最大值决定是否要这个货物
return p1>p2?p1:p2;
}
int main(
vector<int> W = {3,2,4,7,3,1,7};
vector<int> V = {5,6,3,19,12,4,2};
int bag = 15;
cout << maxValue(W,V,15)<<endl;
return 0;
)
代码分析:
代码段1就是按照"从左往右"的模型写的。
递归的base case 有两个限制条件: