动态规划之二—— 从暴力递归到动态规划_背包问题

题目

背包问题:各种货物的重量值存放于数组Weight, 货物的价值值存放于数组Value,背包的容量为bag, 求在不超过背包容量的前提下,背包可以存放的最大价值是多少?

设: int Weight[] = {3,2,4,7,3,1,7};

        int Values[] = {5,6,3,19,12,4,2};

        bag = 15;

注:weight 和values 数组中不含有负数。

题目分析:

先按照暴力递归的思路来解决,而递归的关键就是“尝试”。用于解决递归问题的“尝试”模型有多个,其中一个就是“从左往右”。

“从左往右”的模型是这样的:

假设有n个货物,各个货物的index 从 0 依次到n-1, 即 weight[0~n-1], values[0~n-1], 从index_0 开始枚举考虑货物的“要” 或者“不要”的情况。(例图中 n == 3)

用暴力递归的方式将每一个分支都走到,我们期望的解也必然在其中。

 代码实现:

//代码段1
#include <vector>
#include <iostream>

using namespace std;

int process(vector<int>& W, vector<int>& V, int index ,int bag);

/*
W:所有货物的重量;
V:所有货物的价值;
bag:背包的容量
返回:不超重的情况下,能够得到的最大价值;
*/
int maxValue(vector<int>& W, vector<int>& V, int bag){
    if(W.size == 0 || V.size() == 0 || W.size() != V.size()){
        return 0;
    }
    
    //尝试函数,从第一个货物,即index == 0 开始
    process(W,V, 0, bag);
}

/*
W:所有货物的重量;
V:所有货物的价值;
index:当前考虑到了index号货物,
bag:背包容量
返回最大价值;
*/
int process(vector<int>& W, vector<int>& V, int index ,int bag){
    
    //base case
    if(bag < 0){
        return 0;
    }
    if(index == W.size()){
        return 0;
    }
    
    //不要这个货物
    int p1 = process(W, V, index+1, bag);
    
    //要这个货物
    int p2 = process(W, V, index+1, bag-W[index]) + V[index];

    //根据p1和p2 的最大值决定是否要这个货物
    return p1>p2?p1:p2;

}

int main(
    vector<int> W = {3,2,4,7,3,1,7};
    vector<int> V = {5,6,3,19,12,4,2};
    int bag = 15;
    cout << maxValue(W,V,15)<<endl;
    return 0;
)

代码分析:

代码段1就是按照"从左往右"的模型写的。

递归的base case 有两个限制条件:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xinran0703

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值