- 博客(28)
- 收藏
- 关注
原创 《A Study of Probabilistic Password Models》(IEEE S&P 2014)——论文阅读
将统计语言建模技术引入密码建模,系统评估各类概率密码模型性能,打破PCFGw的 “最优模型” 认知。
2025-09-04 18:02:25
1285
原创 《Password Cracking Using Probabilistic Context-Free Grammars》(IEEE S&P 2009)——论文阅读
首次将 PCFG 应用于密码破解,通过真实密码训练自动生成高概率结构,突破传统方法依赖人工规则的局限,为密码建模提供新范式。
2025-09-03 14:14:01
1234
原创 机试复习 高精度加减乘除模板(c++)
1≤A的长度≤100000 1≤B≤10000, B 一定不为 0。给定两个正整数(不含前导 0),计算它们的差,计算结果可能为负数。1≤整数长度≤100000。场景:给定两个正整数(不含前导 0),计算它们的和。1≤整数长度≤100000。给定两个非负整数(不含前导 0) A,B,计算 A/B 的商和余数。给定两个非负整数(不含前导 0) A 和 B.1≤A的长度≤100000;
2025-09-02 14:36:48
622
原创 《Effectiveness of Distillation Attack and Countermeasure on Neural Network Watermarking》——论文阅读
本文揭示了 模型蒸馏能彻底移除现有水印 这一创新性发现,并提出了 Ingrain 方法,通过任务绑定增强水印鲁棒性,是对神经网络水印研究的重要推进。
2025-08-31 11:41:59
1425
原创 《RANKGUESS: Password Guessing Using Adversarial Ranking》——论文解读
本文发表于IEEE S&P 2025,提出基于对抗排序(Adversarial Ranking) 的口令猜测框架 RANKGUESS,首次将口令生成建模为马尔可夫决策过程(MDP),通过 “猜测器(Guesser)- 排序器(Ranker)” 的对抗交互,实现 “学习排序(Learning-to-Rank)” 与口令猜测的对齐。
2025-08-30 13:43:43
1168
原创 《Password Guessing Using Random Forest》论文解读
本文发表于USENIX Security 2023。论文通过 “特征工程创新 + 场景化模型设计”,成功将经典机器学习应用于口令猜测,提出的 RFGuess 框架在三种核心场景下均表现优异
2025-08-29 11:15:09
891
原创 《口令猜测研究进展》——论文阅读
本文是口令安全领域的系统性综述研究,以 “数据驱动分析用户行为 - 分类梳理猜测算法 - 评估算法性能 - 探讨应用与未来方向” 为逻辑主线
2025-08-28 16:55:27
957
原创 《Unveiling Stealthy Backdoor Attacks against Personalized Federated Learning》——论文阅读 (PFL后门攻击)
本论文打破了 “PFL 比 FL 更安全” 的固有认知,提出的 PFedBA 攻击不仅揭示了 PFL 的后门脆弱性,更通过 “任务对齐” 的设计思路,为后续攻击与防御研究提供了新方向。
2025-08-27 11:07:50
1341
原创 《Password Guessing Using Large Language Models》——论文阅读
首次系统性地将大语言模型(LLMs) 应用于密码猜测任务,提出了一个名为 PAssLLM 的框架,并在多个真实密码数据集上验证了其有效性。
2025-08-25 20:47:06
1217
原创 《Dual Prompt Personalized Federated Learning in Foundation Models》——论文阅读
面向大规模预训练模型的千万级设备场景,用“双提示(Dual Prompt)”机制实现高效、可扩展的个性化联邦学习(PFL)
2025-08-19 17:17:19
719
原创 《PEFLL: Personalized Federated Learning by Learning to Learn》——论文阅读
PEFLL 是一种基于“学会学习”的个性化联邦学习方法,能在无需本地训练的前提下,为任意新客户端快速生成高质量个性化模型。
2025-08-17 14:04:23
644
原创 《HIJACKRAG: Hijacking Attacks against Retrieval-Augmented Large Language Models》——论文阅读
《HIJACKRAG: Hijacking Attacks against Retrieval-Augmented Large Language Models》(HIJACKRAG:针对检索增强大语言模型的劫持攻击)——论文阅读
2025-08-16 13:39:00
1154
原创 关联规则挖掘算法——Apriori算法以及FP-Growth算法
关联规则挖掘:在大量交易数据中,找出经常一起出现的商品组合(频繁项集),并生成“如果买了 A,就更可能买 B”的规则。支持度衡量规则的普遍性,置信度衡量规则的可靠,提升度衡量 A 和 B 的真实关联强度。1. 原理: 先验原理。如果一个项集是频繁的,那么它的所有子集也一定是频繁的。如果一个项集是非频繁的,那么它的所有超集也一定是非频繁的。通过此来进行剪枝。2. 流程: 扫描数据集,统计单个商品的支持度,筛选项集。 两两组合这些筛选出的项集,再次扫描数据集,筛选项集。
2025-08-15 17:41:33
1162
原创 《GuardHFL: Privacy Guardian for Heterogeneous Federated Learning》——论文阅读
GuardHFL—— 异构联邦中 通过轻量级密码技术 实现安全查询新方案
2025-08-15 12:06:18
575
原创 《Distributed Function Secret Sharing and Applications》——论文阅读
设计去中心化的密钥生成协议
2025-08-14 23:05:18
414
原创 《Mind the Cost of Scaffold! Benign Clients May Even Become Accomplices of Backdoor Attack》论文阅读
对于联邦学习中非IID的Scaffold方法,存在后门攻击可实施性,BadSFL通过伪造控制变量来进行后门攻击
2025-08-11 15:11:46
842
原创 联邦学习十大挑战——《Ten Challenging Problems in Federated FoundationModels》 论文阅读
本文聚焦联邦基础模型(FedFMs),系统梳理了该新兴范式的关键问题、现有进展及未来方向。
2025-08-11 10:38:00
1368
原创 编译原理 LL(1),LR(0),SLR(1),LR(1),LALR(1)判断
Follow集:非终结符后可能跟随的终结符集合(用于处理含空产生式的推导 )。同心集:LR(1)中的核心部分(产生式,圆点位置)相同,只有终结符不同。First集:产生式右部能推导出的首个终结符集合(含空串)。第一个L:从左向右扫描字符串;R:最右推导,1:向前看1个符号。项目集规范族:所有可能的项目状态的集合。任意一个非终结符的产生式的任意两个SELECT集交集为空。同一项目集中,无“移进-归约冲突”以及“归约-归约冲突”项目:带圆点的产生式。移进-归约,归约-归约冲突。左部的非终结符的Follow集。
2025-06-23 14:19:17
456
原创 投毒/后门攻击
投毒攻击是一种通过恶意手段向系统、数据中植入有害元素,从而破坏其正常功能、窃取信息或达成其他恶意目的的攻击方式。其本质是通过篡改训练数据或模型参数,使模型学习到错误模式,导致其在预测时输出错误结果。利用机器学习模型对数据的“依赖性”,通过注入精心设计的 “毒数据” 破坏模型的泛化能力。
2025-06-13 22:30:43
796
原创 安全多方计算(SMC)
允许多个参与方在无可信第三方的情况下,基于各自持有的私有输入,共同计算一个约定的函数,并得到一个正确的输出结果。没有人可以获取其他任意一方的输入信息且所有参与方都可以得到正确的计算结果。x1,x2,……,xn是每个参与方的输入,y1,y2,……yn是对应的输出,f是约定的函数。每个参与方只能得到自己的yi输出,而无法获知其他的输入x’。
2025-06-10 16:08:44
375
原创 差分隐私(DP)理解
昨天面试被老师狠狠拷打了差分隐私,于是今天决定好好复习一下。遂写了这一篇。。。通过对数据或查询结果,使得任何单个个体是否存在与数据集中,对最终发布的统计分析结果的影响微乎其微。攻击者即使看到了分析结果,也无法确定某个个体的记录是否对此结果有贡献。
2025-06-08 19:52:40
1223
原创 《BadVFL: Backdoor Attacks in Vertical Federated Learning》 论文阅读 (from IEEE S&P)
《BadVFL: Backdoor Attacks in Vertical Federated Learning》 论文阅读
2025-06-07 16:28:43
692
1
原创 《LMSanitator: Defending Prompt-Tuning Against Task-AgnosticBackdoors 》论文阅读 (from NDSS)
论文阅读:《LMSanitator: Defending Prompt-Tuning Against Task-AgnosticBackdoors 》自留版
2025-06-06 19:17:35
274
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人