在EViews软件中进行ADF检验(Augmented Dickey-Fuller Test)后,通过p值判断序列是否平稳的步骤如下:
1. 理解假设
原假设 (H₀):序列存在单位根(非平稳)。
备择假设 (H₁):序列不存在单位根(平稳)。
2. 查看ADF检验结果
在EViews中,ADF检验结果会输出以下关键信息:
Test statistic(ADF统计量)
Critical values(不同显著性水平下的临界值,如1%、5%、10%)
Prob. (p-value)(p值)
重点关注p值(即“Prob.”对应的数值)。
3. 通过p值判断平稳性
如果 p值 ≤ 显著性水平(如0.05):
拒绝原假设,认为序列平稳。
(例如,p=0.02 < 0.05,结论:平稳)
如果 p值 > 显著性水平(如0.05):
不拒绝原假设,认为序列非平稳。
(例如,p=0.35 > 0.05,结论:非平稳)
4. 注意事项
显著性水平的选择:通常选择 5%(0.05) 作为阈值,但可根据研究需求调整(如1%或10%)。
结合ADF统计量与临界值:若p值接近临界值(如0.06),建议同时比较ADF统计量与临界值。若ADF统计量更负(绝对值更大)于临界值,仍可能拒绝原假设。
检验类型的选择:ADF检验需根据序列特点选择是否包含截距项(Intercept)、趋势项(Trend)或两者都不含。选择错误可能导致误判(可通过观察序列图形辅助判断)。
5. 示例(EViews操作)
在EViews中打开序列,右键选择 Unit Root Test → ADF Test。
在对话框中选择检验类型(如“Intercept”、“Trend and Intercept”或“None”)。
根据输出结果中的 p值 判断:
若 Prob. = 0.0001,远小于0.05 → 平稳。
若 Prob. = 0.78,大于0.05 → 非平稳。
总结
p值 ≤ 0.05 → 序列平稳。
p值 > 0.05 → 序列非平稳,需进一步差分或处理。
通过这种方法,可以快速利用EViews的ADF检验结果判断时间序列的平稳性。