《An Introduction to Statistical Learning with Applications in R》统计学习简介

Gareth James、Daniela Witten、Trevor Hastie和Robert Tibshirani是统计学和机器学习领域的著名学者,他们共同撰写了《统计学习基础》(The Elements of Statistical Learning)一书。以下是与该书相关的五个核心概念及其解释:

1. 回归分析(Regression Analysis):回归分析是一种统计方法,用于研究变量之间的关系。它通过建立数学模型来预测一个因变量(目标变量)基于一个或多个自变量(预测变量)。例如,可以使用回归分析来预测房价基于房屋面积、位置等因素。

2. 分类(Classification):分类是机器学习中的一种监督学习任务,旨在将数据点分配到预定义的类别中。常见的分类算法包括逻辑回归、支持向量机和决策树等。例如,可以通过分类算法来判断一封电子邮件是否为垃圾邮件。

3. 交叉验证(Cross-Validation):交叉验证是一种评估模型性能的方法,通过将数据集划分为训练集和测试集多次,以确保模型的泛化能力。常用的交叉验证方法有k折交叉验证,即将数据集分成k个子集,每次用其中一个子集作为测试集,其余子集作为训练集。

4. 正则化(Regularization):正则化是一种防止过拟合的技术,在构建模型时添加额外的约束条件,以减少模型复杂度。常见的正则化方法有Lasso(L1正则化)和Ridge(L2正则化),它们分别在损失函数中加入绝对值和平方项的惩罚。

5. 随机森林(Random Forest):随机森林是一种集成学习方法,通过构建多棵决策树并结合其结果来进行预测。每棵树都是基于随机选择的特征子集和数据样本构建的,从而提高模型的稳定性和准确性。

https://www.statlearning.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值