数据预处理实验报告

通过完成本实验,应掌握以下知识或技能:

  1. 掌握数据清理的办法,包括缺失值检测、缺失值处理、异常值检测、异常值处理
  2. 掌握离散数据的二进制编码方法,数据规范化方法,数据转换的方法

  • 实验知识点

  1. Python的常见语法
  2. 使用dataframe的boxplot方法画箱型图进行可视化展示,对缺失值及异常值进行处理。
  3. 使用OneHotEncoder()独热编码,创建哑变量

  • 实验环境

名称

版本

系统环境

Windows系统

Windows10

开发环境

Anaconda

Anaconda 3.6

运行环境

Python

Python 3.8

  • 实验数据

泰坦尼克号数据集

  • 实验步骤

本实验对数据进行缺失值、异常值的处理,并将类别型数据转换为哑变量

本实验可以分为以下4个步骤:

  1. 读取数据为dataframe

### 南京邮电大学数据挖掘课程中的数据预处理实验 在数据挖掘领域,数据预处理是一个至关重要的环节。它涉及清洗、转换和标准化原始数据以便于后续分析[^1]。对于南京邮电大学的数据挖掘课程而言,通常会围绕以下几个方面展开: #### 一、数据清理 数据清理的主要目标是解决数据中存在的噪声、缺失值以及不一致等问题。常见的方法包括但不限于: - **填充缺失值**:可以采用均值、中位数或者众数来填补缺失部分。 - **删除异常值**:通过统计学手段识别并移除可能影响模型效果的离群点。 ```python import pandas as pd from sklearn.impute import SimpleImputer # 假设df是我们读取到的一个DataFrame对象 imputer = SimpleImputer(strategy='mean') # 使用平均值替换策略 cleaned_data = imputer.fit_transform(df) ``` #### 二、特征选择与提取 为了提高模型效率及准确性,在实际操作过程中还需要进行有效的特征工程工作。这一步骤可能会涉及到降维技术的应用如PCA(Principal Component Analysis),从而减少冗余变量带来的干扰效应。 #### 三、规范化/标准化处理 为了让不同量纲下的数值能够公平比较,往往需要执行某种形式上的尺度调整作业。例如Min-Max Scaling可以使所有样本映射至特定区间;而Standardization则让分布呈现零均值单位方差特性。 ```python from sklearn.preprocessing import StandardScaler, MinMaxScaler scaler_std = StandardScaler() scaled_features_standard = scaler_std.fit_transform(cleaned_data) scaler_minmax = MinMaxScaler(feature_range=(0, 1)) scaled_features_minmax = scaler_minmax.fit_transform(cleaned_data) ``` 尽管具体案例未被提及,但以上内容构成了大多数高校开展此类教学活动的基础框架[^1]。如果寻找更贴近南邮风格的学习材料,则建议访问学校官方发布的资源库或是联系授课教师获取最新版本的教学大纲及相关文件链接地址。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值