学习了b站Turing_Sheep的思路
一、暴力模拟
思路:
b[i] = a[i] / v
b[1] = a[1] / v
b[2] = a[2] / v
....
b[n] = a[n] / v
以上列举中v要满足所有的记录,但凡一个记录不满足,v就不满足题意。
从小到大列举v,设置v最大为1e6
设置一个标志位,如果不满足即跳过这个v
如果找到了满足所有记录的v,同时也是从小到大排列,肯定是最小的v
同理,从大到小排列找出最大的v
为什么这里的v取1e6?
因为要枚举所有的v,通过N条记录判断是否合法。
v: 1e4*N = 1e4*1e4 = 1e8(不超时,但是答案会有错误)
v: 1e6*N = 1e6*1e4 = 1e10 (会超时,但可以保证正确性)
#include<bits/stdc++.h>
using namespace std;
const int N = 1e4+10;
void solve()
{
int n; cin >> n;
vector<int>a(n),b(n);
for (int i = 0; i < n; i++) cin >> a[i] >> b[i];
//枚举的转化率v
//从小到大枚举 找最小值
for (int i = 1; i <= 1e6; i++)
{
bool flag = true;//标记当前的v是否合法
for (int j = 0; j < n; j++)
{
if (b[j] != (a[j] / i))
{
flag = false;
break;
}
}
if (flag)
{
cout << i << ' ';
break;
}
}
//从大到小枚举 找最大值
for(int i = 1e6; i >= 1; i--)
{
bool flag = true;
for (int j = 0; j < n; j++)
{
if (b[j] != (a[j] / i))
{
flag = false;
break;
}
}
if (flag)
{
cout << i << '\n';
break;
}
}
}
signed main()
{
ios::sync_with_stdio(0),cout.tie(0),cin.tie(0);
int t;
t = 1;
while(t--)
solve();
return 0;
}
二、二分
思路:
将v的排列转化成从1到1e6的一条线,而我们要找的就是所有合法v的最大最小值。
对于min左侧的点,不包含min;至少存在一组数据,满足B[i] < A[i] / v
对于min右侧的点,不包含min;至少存在一组数据,满足B[i] >= A[i] / v
min这个点所对的v中对应的N条数据也是满足:B[i] >= A[i] / v
以上三条即check函数(找到我们需要的点,分析出该点左右两侧的性质)
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e4+10;
int a[N],b[N];
int n;
bool check_min(int mid)
{
for (int i = 0; i < n; i++)
//至少存在一条数据是<
if (b[i] < a[i] / mid) return false;
return true;
}
bool check_max(int mid)
{
for (int i = 0; i < n; i++)
//至少存在一条数据是<
if (b[i] > a[i] / mid) return false;
return true;
}
signed main()
{
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i] >> b[i];
// 找最小值
int lmin = 1,rmin = 1e9;
while(lmin < rmin){
int mid = lmin + rmin >> 1;
if (check_min(mid)) rmin = mid;
else lmin = mid + 1;
}
// 找最大值
int lmax = 1, rmax = 1e9;
while(lmax < rmax){
int mid = lmax + rmax + 1 >> 1;
if(check_max(mid)) lmax = mid;
else rmax = mid - 1;
}
cout << lmin << ' ' << lmax << '\n';
return 0;
}