自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 【PyTorch】常用网络层layers总结

PyTorch中网络搭建主要是通过调用layers实现的,这篇文章总结了putorch中最常用的几个网络层接口及其参数。本文对pytorch使用最多的layers进行了介绍,重点介绍了网络层接口以及参数。

2024-09-09 06:23:00 1021

原创 【PyTorch】使用容器(Containers)进行网络层管理(Module)

本文介绍PyTorch库常用的nn.Sequential,nn.ModuleList,nn.ModuleDict容器以及nn.ParameterList & ParameterDict参数容器。容器是pytorch框架对网络进行组织管理的实用工具,合理运用可以极大提高代码的可读性与可维护性。

2024-09-06 22:07:40 1016

原创 ArcGIS:成分栅格编码-矢量数据的综合分析

实习目的:成分栅格的基本原理和方法 、综合运用矢量数据分析方法制作成分栅格 、分析不同栅格编码方法的特点实验内容:根据某地的土地利用现状数据,综合运用多种方法,生成土地利用的成分栅格数据实习数据:地类图斑、行政区实验原理与方法:在数据四至范围内创建与像元同样大小的格网多边形,格网多边形与土地利用数据叠加,统计各格网多边形内各种地类的面积并计算面积比例,将统计表中的数据按各个地类分别选择出来并输出为独立的表格,将耕地的输出表格与格网多边形进行属性连接。

2024-07-29 21:43:48 2126

原创 测量平差中的误差椭圆详解

误差椭圆反映了测量结果在平差过程中的不确定性。它是由测量中的协方差矩阵计算得出的一种几何图形,描述了测量值在不同方向上的分布及其相对于平均值的离散程度。在平差过程中,通常会得到协方差矩阵,其中包括主要的方差和协方差项。# 定义协方差矩阵元素本文详细介绍了测量平差中的误差椭圆,通过Python实现了计算和绘制误差椭圆的过程。我们从定义误差椭圆的概念开始,到解释了如何利用协方差矩阵计算主要参数,再到最终的绘图展示,帮助读者全面了解了误差椭圆在测量学中的重要作用。

2024-07-27 21:10:30 656

原创 Arcgis:空间数据分幅与预处理

利用Arcgis,掌握空间数据分幅和处理的基本方法与技巧,通过用研究区剪裁拼接后的地图,成功获取了研究区内的土地利用数据。

2024-07-26 21:09:42 2281

原创 计算机视觉基础:Harris角点检测算法手撕

Harris角点检测是计算机视觉的经典算法,这一篇文章带你看懂这个基础且强大的角点检测算法,牢固cv基础。

2024-07-25 12:25:58 2031

原创 K-means算法手撕:原理、代码、结果

K-Means算法是一种常见且高效的无监督聚类算法,广泛应用于数据挖掘和机器学习领域。它通过将数据点划分为K个簇,极大简化了数据的复杂性。这一期我们来学习这个简单且强大的算法。

2024-07-24 17:40:19 980

原创 PyTorch:一文了解pytorch模块结构

上一篇文章我们介绍学习了Pytorch的Autograd模块,除此之外还有哪些重要模块值得我们了解呢?本期重点介绍pytorch的关键模块。

2024-07-23 22:24:03 1061

原创 Autograd:PyTorch自动求导模块基础

在深度学习中,反向传播和梯度计算是模型训练的核心。在上一节我们以均方误差作为梯度下降算法的优化准则,以手动求导的方式构建代码。(这太笨了!)那么有什么更优雅的方式来实现函数的自动求导吗?当然有。这一期我们来学习PyTorch的Autograd模块。

2024-07-22 21:11:57 928

原创 深度学习基础:梯度下降算法手撕

在深度学习中,梯度下降算法发挥着重要作用。由于深度学习模型通常具有大量的参数,因此需要一个高效的优化算法来更新这些参数。梯度下降算法通过计算损失函数关于每个参数的梯度,沿着梯度的反方向更新参数,从而实现对模型的训练。这个步骤可以通过调用已封装好的模块自动实现,但是为了加深对于模型原理的理解,本期我们以线性拟合为例介绍梯度下降算法的数学原理和代码实现。

2024-07-22 21:08:49 831

Harris角点检测算法实验资料(原理、代码、结果)

本次实验旨在全面了解Harris角点检测算法,具体目标包括: 1.理解Harris角点检测的原理和算法。 2.掌握Harris角点检测的编程实现过程。 3.通过比较不同阈值和K值下的检测效果,评估算法的性能和鲁棒性。 通过本次实习对Harris角点检测算法的学习和实践,我们得到了以下结论: 1.Harris角点检测算法原理理解: Harris角点检测算法基于图像中局部区域的灰度变化来检测角点。通过计算图像中每个像素点处梯度,进而分析该点在不同方向上的灰度变化程度,以确定其是否为角点。 2.编程实现: 成功使用编程实现了Harris角点检测算法,包括图像预处理、梯度计算、结构矩阵计算、角点响应函数计算和角点标记等步骤。 3.不同参数下结果比较: 通过比较不同阈值和K值下的检测效果,我们发现阈值和K值的设置对检测到的角点数量和质量有显著影响。较高的阈值会减少检测到的角点数量,但可能提高角点的准确性;较低的阈值则会增加角点数量,但可能引入一些非角点区域。 K值的选择同样重要,它决定了对边缘和角点的敏感度。较小的K值对边缘敏感,而较大的K值则对角点更加敏感。 4.改进与扩展

2024-07-24

K-means算法实验资料(原理、代码、结果)

本次实验的目的是深入理解和掌握K-Means聚类算法,特别是通过比较不同的实现方法(手动实现、OpenCV库和skimage库实现)以及不同的改进算法(二分K-Means和KMeans++)在不同参数设置下的性能,来增强对聚类算法的理解。 具体目标如下: 1.理解K-Means聚类算法:通过实际的数据处理和聚类操作,深入理解K-Means算法的基本原理和实现过程,包括质心初始化、簇分配、质心更新和收敛判断等步骤。 2.掌握手动实现K-Means算法:通过使用Python编程语言和numpy库,手动实现K-Means聚类算法。理解算法的迭代过程、初始质心选择对结果的影响,以及在不同簇数(K值)下算法的表现。 3.比较不同实现方法的效果和性能:通过比较手动实现的K-Means算法与OpenCV和skimage库中提供的K-Means算法,了解不同实现方法在相同数据集和相同簇数(K值)下的聚类效果和计算效率。分析不同实现方法的优缺点以及适用场景。 4.尝试改进K-Means算法并进行比较:实现并应用二分K-Means和KMeans++算法,理解这些改进方法的基本原理和实现过程。

2024-07-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除