- 博客(10)
- 收藏
- 关注
原创 【PyTorch】常用网络层layers总结
PyTorch中网络搭建主要是通过调用layers实现的,这篇文章总结了putorch中最常用的几个网络层接口及其参数。本文对pytorch使用最多的layers进行了介绍,重点介绍了网络层接口以及参数。
2024-09-09 06:23:00 1021
原创 【PyTorch】使用容器(Containers)进行网络层管理(Module)
本文介绍PyTorch库常用的nn.Sequential,nn.ModuleList,nn.ModuleDict容器以及nn.ParameterList & ParameterDict参数容器。容器是pytorch框架对网络进行组织管理的实用工具,合理运用可以极大提高代码的可读性与可维护性。
2024-09-06 22:07:40 1016
原创 ArcGIS:成分栅格编码-矢量数据的综合分析
实习目的:成分栅格的基本原理和方法 、综合运用矢量数据分析方法制作成分栅格 、分析不同栅格编码方法的特点实验内容:根据某地的土地利用现状数据,综合运用多种方法,生成土地利用的成分栅格数据实习数据:地类图斑、行政区实验原理与方法:在数据四至范围内创建与像元同样大小的格网多边形,格网多边形与土地利用数据叠加,统计各格网多边形内各种地类的面积并计算面积比例,将统计表中的数据按各个地类分别选择出来并输出为独立的表格,将耕地的输出表格与格网多边形进行属性连接。
2024-07-29 21:43:48 2126
原创 测量平差中的误差椭圆详解
误差椭圆反映了测量结果在平差过程中的不确定性。它是由测量中的协方差矩阵计算得出的一种几何图形,描述了测量值在不同方向上的分布及其相对于平均值的离散程度。在平差过程中,通常会得到协方差矩阵,其中包括主要的方差和协方差项。# 定义协方差矩阵元素本文详细介绍了测量平差中的误差椭圆,通过Python实现了计算和绘制误差椭圆的过程。我们从定义误差椭圆的概念开始,到解释了如何利用协方差矩阵计算主要参数,再到最终的绘图展示,帮助读者全面了解了误差椭圆在测量学中的重要作用。
2024-07-27 21:10:30 656
原创 Arcgis:空间数据分幅与预处理
利用Arcgis,掌握空间数据分幅和处理的基本方法与技巧,通过用研究区剪裁拼接后的地图,成功获取了研究区内的土地利用数据。
2024-07-26 21:09:42 2281
原创 计算机视觉基础:Harris角点检测算法手撕
Harris角点检测是计算机视觉的经典算法,这一篇文章带你看懂这个基础且强大的角点检测算法,牢固cv基础。
2024-07-25 12:25:58 2031
原创 K-means算法手撕:原理、代码、结果
K-Means算法是一种常见且高效的无监督聚类算法,广泛应用于数据挖掘和机器学习领域。它通过将数据点划分为K个簇,极大简化了数据的复杂性。这一期我们来学习这个简单且强大的算法。
2024-07-24 17:40:19 980
原创 PyTorch:一文了解pytorch模块结构
上一篇文章我们介绍学习了Pytorch的Autograd模块,除此之外还有哪些重要模块值得我们了解呢?本期重点介绍pytorch的关键模块。
2024-07-23 22:24:03 1061
原创 Autograd:PyTorch自动求导模块基础
在深度学习中,反向传播和梯度计算是模型训练的核心。在上一节我们以均方误差作为梯度下降算法的优化准则,以手动求导的方式构建代码。(这太笨了!)那么有什么更优雅的方式来实现函数的自动求导吗?当然有。这一期我们来学习PyTorch的Autograd模块。
2024-07-22 21:11:57 928
原创 深度学习基础:梯度下降算法手撕
在深度学习中,梯度下降算法发挥着重要作用。由于深度学习模型通常具有大量的参数,因此需要一个高效的优化算法来更新这些参数。梯度下降算法通过计算损失函数关于每个参数的梯度,沿着梯度的反方向更新参数,从而实现对模型的训练。这个步骤可以通过调用已封装好的模块自动实现,但是为了加深对于模型原理的理解,本期我们以线性拟合为例介绍梯度下降算法的数学原理和代码实现。
2024-07-22 21:08:49 831
Harris角点检测算法实验资料(原理、代码、结果)
2024-07-24
K-means算法实验资料(原理、代码、结果)
2024-07-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人